论文

塔克拉玛干沙漠腹地大气气溶胶中游离氧化铁的测定

展开
  • 1. 新疆塔城地区气象局, 新疆 塔城 834700;
    2. 中国气象局乌鲁木齐沙漠气象研究所, 新疆 乌鲁木齐 830002;
    3. 中国科学院新疆生态与地理研究所, 新疆 乌鲁木齐 830011;
    4. 中国科学院天山积雪雪崩研究站, 新疆 乌鲁木齐 830011;
    5. 塔中气象站, 新疆 库尔勒 830013;
    6. 中国科学院研究生院, 北京 100049

收稿日期: 2010-10-14

  修回日期: 2010-12-14

  网络出版日期: 1997-08-20

基金资助

公益性行业(气象)科研专项(GYHY200706008)、公益性行业科研专项(GYHY200806011)、新疆生态与地理研究所绿洲学者"博士"人才培养计划(0771021)、中国沙漠气象科学研究基金(Sqj2006001)、国家自然科学基金(40801234)共同资助。

Quantification and Semi-quantification of Iron-oxide Minerals in Aerosol Particles in the Hinterland of Taklimakan Desert

Expand
  • 1. Tacheng Meteorological Bureau, Tacheng, Xinjiang 834700, China;
    2. Urumqi Institute of Desert Meteorology, China Meteorological Administration, Urumqi, Xinjiang 830002;
    3. Xingjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China;
    4. Tianshan Snow and Avalanche Research Station, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China;
    5. Tazhong Meteorological Station, Kuerle, Xinjiang 830013, China;
    6. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2010-10-14

  Revised date: 2010-12-14

  Online published: 1997-08-20

摘要

大气沙尘气溶胶中铁氧化物含量的测定对研究气溶胶吸收特性有重要的研究意义。采用柠檬酸盐-重碳酸盐-连二亚硫酸盐(CBD)和漫反射光谱法(DRS)对塔克拉玛干沙漠腹地塔中站2006年4月9~11日沙尘暴天气过程前后TSP沙尘样品中的游离氧化铁进行定量和半定量研究,研究得出,塔中游离氧化铁占全铁含量的变化范围在4.55%~8.16%之间(平均值6.36%),全铁占样品总量的5.16%,游离氧化铁占样品总量的0.32%;反射光谱一阶导数曲线峰值在435和560nm对针铁矿和赤铁矿具有识别指示意义。

本文引用格式

陆辉, 魏文寿, 刘明哲, 吴新萍, 牟书勇, 韩茜 . 塔克拉玛干沙漠腹地大气气溶胶中游离氧化铁的测定[J]. 地理科学, 2011 , 31(8) : 969 -975 . DOI: 10.13249/j.cnki.sgs.2011.08.969

Abstract

By scattering and absorbing solar and telluric radiation, dust aerosol has a direct impact on the Earth’s radiative balance. Their quantification is of utmost importance to assess the desert dust optical properties. Iron oxides minerals (especially hematite and goethite) contents are very low in aerosol particles, which are strong absorbers at ultra-violet and visible wavelengths. CBD method and diffuse reflectance are adapted to quantify and semi-quantify the free-iron oxides contents in the aerosols collected at Tazhong on 9-11 April, 2006 in the Hinterland of Taklimakan Desert. For these samples, the percentage of free-iron relative to the total estimated aerosol mass increased from 4.55% to 8.16% with an average of 6.36%. Total-iron content, free-iron content and free-to-total iron ratio are 5.16%, and 0.32%, respectively. The first derivatives of the reflectance spectra are consistent with signals from two iron-oxide minerals, hematite and goethite, at wavelengths of 560 nm and 435 nm, respectively.

参考文献

[1] 王明星,张仁健.大气气溶胶研究的前沿问题[J].气候与环境研究,2001,6(1):119~124.
[2] Perlwitz J,Tegen I,Miller R L,et al.Interactive soil dust aerosol model in GISS GCM 1.Sensitivity of the soil dust cycle to radiative properties of soil dust aerosol[J].Journal of Geophysical Research,2001,106(D16): 18167-18192.
[3] Sokolik I N,Toon O B.Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths[J].Journal of Geophysical Research,1999,104(D8):9423-9444.
[4] Torrent J,Schwertmann U,Fechter H,et al.Quantitative relationships between soil color an hematite content[J].Soil Science,1983,136(6):354-358.
[5] 潘月鹏,阎百兴,路永正,等.三江平原水环境中可溶性铁的分布特征研究[J].地理科学,2007,27(6):820~824.
[6] JI J F,Balsam W L,Chen J.Mineralogical and climate inter interpretation of the Luoehuan loess section(China)based on Diffuse Reflectance Spectrophotometry[J].Quaternary Research,2001,56:23-30.
[7] 陈家坊.土壤胶体中的氧化物[J].土壤通报,1981,12(2):45.
[8] 熊毅等.土壤胶体(第二册,土壤胶体研究法)[M].北京:科学出版社,1985:245~250.
[9] 于天仁,王振权.土壤分析化学[M].北京:科学出版社,1988:341~353.
[10] 熊 毅.土壤胶体(第一册,土壤胶体的物质基础)[M].北京:科学出版社,1983:159~160.
[11] Moberg J P,Esu I E,Malgwi W B.Characteristics and constituent composition of harmattan dust falling in Northern Nigeria[J].Geoderma,1991,48(1-2):73-81.
[12] Arimoto R,Balsam W,Schloesslin C.Visible spectroscopy of aerosol particles collected on filters: iron oxide minerals[J].Atmospheric Environment,2002,36(1):89-96.
[13] Shen Z X,Cao J J,Zhang X Y,et al.Spectroscopic analysis of iron-oxide minerals in aerosol particles from northern China[J].Science of the Total Environment,2006,367(2-3):899-907.
[14] 韩致文,王 涛,董治宝,等.塔克拉玛干沙漠公路沿线风沙活动的时空分布[J].地理科学,2005,25(4):455~460.
[15] 赵琳娜,孙建华,王 超.2006年春季最强沙尘暴过程的数值分析[J].气候与环境研究,2007,12(3):309~319.
[16] Draxler R R Hess G D.Description of the HYSPLIT_4 modeling system//NOAA Technical Memo.ERL ARL-224,1997.
[17] 张明军,周 平,李忠勤,等.天山乌鲁木齐河源1号冰川大气气溶胶和新雪中可溶性离子关系研究[J].地理科学,2010,30(1):141~148.
[18] 王敏仲,魏文寿,杨莲梅.塔里木盆地一次东灌型沙尘暴环流动力结构分析[J].中国沙漠,2008,28(2):370~376.
[19] Bodhaine B A.Aerosol absorption measurements at Barrow, Mauna Loa and the South Pole[J]. Journal of Geophysical Research,1995,100(D5): 8967-8975.
[20] Hansen A D A.The Aethalometer, manual. Berkeley, California[M]USA: Magee Scientific,2003.
[21] Mehra O P,Jackson M L.Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate[J].ClaysClay Miner,1960,5:317-327.
[22] Hunt C P,Singer M J,Kletetschka G,et al.Effect of citrate-bicarbonate-dithionite treatment on fine-grained magnetite and maghemite[J]. Earth Planetary Science Letters,1995,130(1-4):87-94.
[23] 何华春,丁海燕,张振克,等.淮河中下游洪泽湖湖泊沉积物粒度特征及其沉积环境意义[J].地理科学,2005,25(5): 590~596.
[24] 王小如.电感耦合等离子体质谱应用实例[M].北京:化学工业出版社,2005.
[25] Balsam W L,Deaton B C.Sediment dispersal in the Atlantic Ocean: evaluation by visible light spectral[J].Reviews in Aquatic Sciences,1991,4(4):411-447.
[26] Balsam W L,Damuth J E.Further investigations of shipboard vs.shore-based spectral data: implications for interpreting Leg 164 sediment composition[Z].Paull C K,Matsumoto R,Wallace P J,Dillon,eds.Proceedings ODP Scientific Results 164,College Station, TX.Ocean Drilling Program, Texas A & M University,2000:313-324.
[27] Barranco Jr F T,Balsam W L,Deaton B C.Quantitative reassessment of brick red lutites:evidence from reflectance spectrophotometry[J].Marine Geology,1989,89(3-4):299-314.
[28] 霍 文,王 健,刘新春.器测与目测能见度差异分析[J].气象科技,2006,34(5):638~641.
[29] 何 清,魏文寿,李祥余,等.塔克拉玛干沙漠腹地沙尘暴过境时近地层风速、温度和湿度廓线特征[J].沙漠与绿洲气象,2008,2(6):6~11.
[30] Cahill T A,Ashbauqh L L,Barone J B,et al.Analysis of respirable fractions in atmospheric particulates via sequential filtration[J].Journal of Air Pollution Control Association,1977,27(7): 675-678.
[31] 赵元杰,周兴佳.塔里木沙漠公路沿线沙物质特征及环境意义[J].干旱区研究,1999,16(3):53~58.
[32] Ji J F,William B,Jun C,et a1.Rapid and Quantitative measurement of hematite and goethite in the Chinese loess-Paleosol sequences by diffuse reflectance spectroscopy[J].Clays and Clay Minerals,2002,50(2):208-216.
[33] Jackson M L.Chemical composition of soils[M].London:Chapman & Hall,Ltd.,1964.
[34] Oades J M.The nature and distribution of iron compounds in soils[J].Soil and Fertilizer,1963,26(1):69-80.
[35] Bohren C F,Hufman D R.Absorption and scattering of light by small particles[M].New York:Wiley Interscience,1998:436-439.
[36] Sandra L,Jean-Louis R,Stéphane C,et al.Quantification of iron oxides in desert aerosol[J].Atmospheric Environment,2004,38(8):1211-1218.
[37] Deaton B C,Balsam W L.Visible spectroscopy—a rapid method for determining hematite and goethite concentration in geological materials[J].Journal of Sedimentary Petrology,1991,61(4):628-632.
[38] Balsam W L,Wolhart R J.Sediment dispersal in the Argentine Basin: evidence from visible light spectra[J].Deep Sea Research,1993,40(4-5):1001-1031.
[39] Kämpf N,Schwertmann U.Goethite and hematite in a climosequence in Southern Brazil and their application in classification of kaolinitic soil[J].Geoderma,1983,29(1):27-39.
文章导航

/