土壤可蚀性是评价土壤对侵蚀敏感程度的重要指标,是土壤侵蚀预报的重要参数,准确评价土壤可蚀性、建立不同土壤类型的土壤可蚀性K值库具有重要意义。在总结前人研究成果的基础上,运用室内模拟试验、野外模拟降雨试验资料和野外观测小区资料,计算了不同坡长小区的K值,并对坡长对K值的影响加以分析研究。结果表明,坡长较短时,土壤可蚀性随坡长的增加而增大,且变化明显;坡长大于15 m时,K值相对趋于稳定,该结论为K值模拟研究中小区的坡长选择提供了一定的理论依据。
Soil erosion is now universally reckoned as an ecological environment problem, which results in land degradation and a band of ecological problems such as water pollution and flood disaster. And soil erosion is one of the most serious environmental issues in China. A key to restoring ecological environment is to control soil erosion. Soil erodibility, the susceptibility of soil to erosive forces, is generally considered an inherent soil property with a constant value. Which being an important index to evaluate the soil sensitivity to erosion, how to precisely study and evaluate soil erodibility is an important factor in soil loss prediction. It is of great significance to determine soil erodibility and develop the database for the factor K for different soil types. Since the study on the effect of soil properties on erosion began in the 1950s in China, an abundance of achievements about soil erodibility has been scored. But a number of problems still exist. The first problem is the selection of slope length to evaluate the soil erodibility, which have few studied in China for recent years. In this paper, K values for soils on plots with different lengths were computed and the effects of slope length on Kwere analyzed, based on the data from lab simulation experiments, field simulation experiments and field plots in Zizhou, Lishi, Fuxian and Zhangjiakou respectively. According to the results, we can concluded that though the value of soil erodibility variance with the slope length, K values increased markedly with slope length in cases of short-length slopes and K values tended to be consistent for slopes with lengths>15 m. So, when the experiments of the soil erodibility simulation are carried out, the slope length should be no less than 15m. The result may be used to select slope length in Ksimulation experiments.
[1] 彭文英,张科利,江忠善.黄土高原坡耕地退耕还草的水沙变化特征[J].地理科学,2002,22(4):397~401.
[2] 罗立芳,张科利,李双才.撂荒后黄土高原坡耕地土壤透水性和抗冲性的变化[J].地理科学,2003,23(6):728~733.
[3] Olson and Wischmeier. Soil erodibility evaluation for soils on the runoff and erosion stations[J].Soil Science, 1963, 27(5): 590-592.
[4] 朱显谟.泾河流域土壤侵蚀现象及其演变[J].土壤学报,1954,2(4):209~222.
[5] 田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究[J]土壤学报,1960, 8(2):110~121.
[6] 史德明,杨艳生,姚宗虞.土壤侵蚀调查方法中的侵蚀实验研究和侵蚀量测定问题[J].中国水土保持,1983,(6):10~15.
[7] 蒋定生.黄土抗蚀性的研究[J].土壤通报,1978,(4):20~23.
[8] 蒋定生,李新华,范兴科,等.论晋陕蒙接壤地区土壤的抗冲性与水土保持措施体系的配置[J].水土保持学报,1995,9(1):1~7.
[9] 李 勇,吴钦孝,朱显谟.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):1~16.
[10] 周佩华,武春龙.黄土高原土壤抗冲性的实验研究方法探讨[J].水土保持学报,1993,7(1):29~34.
[11] 金争平,史培军,候福昌.黄河黄甫川流域土壤侵蚀系统模型和治理模式[M].北京:海洋出版社,1992.
[12] 张宪奎,许靖华,卢秀琴,等.黑龙江省土壤流失方程的研究[J].水土保持通报,1992,12(4):1~9.
[13] 杨艳生,史德明.关于土壤流失方程中K因子的探讨[J].中国水土保持,1982,(4):39~42.
[14] 陈明华,周福建,黄炎和.土壤可蚀性因子的研究[J].水土保持学报,1995,9(1):19~24.
[15] 史学正,于东升,吕喜玺.用人工模拟降雨仪研究我国热带土壤可蚀性[J].水土保持学报,1995,9(3):38~42.
[16] 林素兰,黄 毅,聂振刚,等.辽北低山丘陵区坡耕地土壤流失方程的建立[J].土壤通报,1997,28(6):251~253.
[17] 杨子生.滇东北山区坡耕地土壤流失方程研究[J].水土保持通报,1999,19(1):1~9.
[18] 刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报,1999,14(4):345~350.
[19] 张科利,蔡永明.土壤侵蚀预报研究中的标准小区问题论证[J].地理研究,2000,19(3):297~302.
[20] 张科利,蔡永明.土壤可蚀性动态变化规律研究[J].地理学报,2001,56(6):673~681.
[21] 张科利.黄土坡面侵蚀产沙分配及其降雨特征关系的研究[J].泥沙研究,1991, (4):39~46.
[22] 王万忠,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙[M].北京:科学出版社,1995.
[23] 蔡强国.水土流失规律坡地改良利用[M].北京:环境科学出版社,1998.