论文

大庆市建成区土壤重金属潜在生态危害和健康风险评价

展开
  • 吉林大学环境与资源学院, 吉林 长春 130012

收稿日期: 2010-06-04

  修回日期: 2010-11-23

  网络出版日期: 2011-01-20

基金资助

中国地质调查研究局项目(1212010511217-03)资助。

Assessment on Potential Ecological Hazard and Human Health Risk of Heavy Metals in Urban Soils of Daqing City

Expand
  • College of Environmental and Resources Sciences, Jilin University, Changchun, Jilin 130012, China

Received date: 2010-06-04

  Revised date: 2010-11-23

  Online published: 2011-01-20

摘要

根据大庆市城市功能区划,以表层土壤为研究对象,通过308个样品的采集、测定、分析,采用Hakanson潜在生态风险危害指数法评价土壤重金属元素的潜在生态危害程度。结果表明,表层土壤重金属污染程度较低,潜在生态危害风险较小,汞(Hg)和镉(Cd)是主要的潜在生态危害元素。汞的生态危害风险相对较大,有11.9%的样品处于较重及以上风险级别,镉的生态危害级别虽然较低,但中等危害级别分布范围较广。分别用致癌风险和非致癌风险模型进行了土壤重金属镉和汞对人体健康的风险评价,两种元素的风险指数均处于安全值范围内,不会对当地居民的健康构成风险。

本文引用格式

汤洁, 陈初雨, 李海毅, 张天琴, 肖瑞 . 大庆市建成区土壤重金属潜在生态危害和健康风险评价[J]. 地理科学, 2011 , 31(1) : 117 -122 . DOI: 10.13249/j.cnki.sgs.2011.01.117

Abstract

Based on urban function zone divisions, 308 surface samples were collected from the urban soils of Daqing City, Heilongjiang Province, China, and determined in laboratory. The potential ecological hazard of heavy metals in the surface soils were assessed by using Hakanson’s potential risk index. The results show that the degrees of heavy metals pollution were lower in the surface soils of the study area, with lower potential ecological risk. As for the main hazard elements, Hg has higher ecological risk, of which 11.9% samples are above the heavy risk level; Cd has lower ecological risk, however, samples with middle risk level are widely distributed. In addition, the assessment results of human health risk show that the cancer and non-cancer hazard indexes of Cd and Hg are both below the threshold values, indicating that the effects of Cd and Hg pollution on human health are light in the urban area of Daqing City.

参考文献

[1] 韩爱民,蔡继红,屠锦河,等.水稻重金属含量与土壤质量的关系[J].环境监测管理与技术, 2002, 14(5): 27~28.
[2] Shomar B H,Müller G,Yahya A.Geochemical features of topsoils in the Gaza Strip: Natural occurrence and anthropogenic inputs[J]. Environmental Research, 2005,(98): 372-382.
[3] 郭 平,谢忠雷,李 军,等.长春市土壤重金属污染特征及其潜在生态风险评价[J].地理科学,2005,25(1):108~112.
[4] 基于生态足迹模型的资源型城市可持续发展定量评估——以黑龙江省石油城市大庆市为例[J].地理科学,2006,26(4):420~425.
[5] 大庆统计局.大庆市统计年鉴 [M].北京:中国统计出版社,1984~2002.
[6] 周利军,臧淑英.大庆市土地利用变化对生态环境的影响[J].国土与自然资源研究, 2005,15(1):32~33.
[7] 顾继光,周启星,王 新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报,2003,11(2): 143~151.
[8] Muller G.Index of geoaccumulation in sediments of the Rhine River[J].Geojournal,1979,2:108-118.
[9] Hakanson L. An ecological risk index for aquatic pollution control a sediment to logical approach [J]. Water Research, 1980, 14(8): 975-1001.
[10] 李 健,郑春江,郭希利,等.环境背景值数据手册[M].北京:中国环境科学出版社,1989.
[11] US Environmental Protection Agency. Exposure Factors Handbook[S].EPA/600/P-95/002.1997:104-126.
[12] 王政权.地统计学在生态学中的应用[M].北京:科学出版社.1999.
[13] 张 辉,马东升.城市生活垃圾向土壤释放重金属研究[J].环境化学, 2001,20(1):43~47.
[14] US Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual(Part A)[S].EPA/540/1-89/002,1989:35-52.
[15] US Environmental Protection Agency. Superfund Public Health Evaluation Manual[S]. EPA/540/1-86/060,1986:1-52.
[16] US Environmental Protection Agency. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites[M]. Washington D C:Washington Office of Solid Waste and Emergency Response, US Environmental Protection Agency,2001:4-24.
文章导航

/