基于区域自然灾害发生的复杂性和不确定性,运用分形、混沌理论,对新亚欧大陆桥新疆段近38年的洪水灾害资料进行了时空分维特征研究。结果表明:陆桥新疆段洪水灾害不仅在时间序列上具有自相似性,其容量维Df在0.0497~0.0678间,而且在空间序列上也具有自相似性,存在明显分维结构,其信息维D1在0.0537~0.0797之间。洪水灾害严重区段的信息分维值较低,并且信息分维与洪水灾害发生频度呈反相关。这一特征将有助于我们认识灾害发生规律和动力学特征。
Fractal and Chaos Theory is a subject on entering a kind of special disordered state in the process of system evolution. In this paper, based on the random and indefinite of regional natural disaster, the space time fractal characteristic of the flood hazard in Xinjiang Line of New Eurasian Continental Bridge is studied using the Fractal and Chaos Theory. The analysis of 38-year flood hazard data shows that the flood hazard in Xinjiang Line have self-similarity not only in the time alignment (volume fractal dimension Df varied from 0.0497 to 0.0678), but in the space alignment (informative fractal dimension D1 varied from 0.0531 to 0.0797). Moreover, except for showing the grades of flood hazard as time alignment by the relationship that volume fractal dimension Df is in inverse proportion to the disaster grades, space alignment can reveal the irregularity of flood hazard distribution.The result from this is useful for us to recognize the inner regularity and dynamic characteristic of the flood hazard.
[1] Mandelbrot B B. How long is the coast of Britain Statistical self-similarity and fractal dimension[J]. Science, 1967, 155(3775): 636-38.
[2] Carciaa J M, et al. Fractal tress and Horton's laws[J]. Math Geol. 1992, 24(1): 61-71.
[3] Feder J. Fractals[M]. New York & London: Plenum Press. 1988. 214.
[4] Mesa O J. On the main channel length-area relationship for channel networks[J]. Water Resources Research. 1987, 23(11): 2119-22.
[5] Robert A, et al. On the fractal interpretation of the mainstream length-drainage area relationship[J]. Water Resources Research. 1990, 26(5): 839-842.
[6] Ito K, et al. Chaos behavior in great earthguake occurrence[J]. J. Geophys. Res. 1980, 85: 1399-1408.
[7] Ito K, et al. Chaos behavior in great earthguake occurrence[J]. Journal of the Physical Society of Japan. 1980, 49: 43-52.
[8] Kagan Y Y, Knopoff L. Stochastic synthesis of earthguake catalog[J]. J. Geophys. Res. 1981. 86: 2853-2862.
[9] Kagan Y Y, Knopoff L. Stochastic synthesis of earthguakes: the two-point correlation function[J]. J. Geophys. Res. 1980, 62: 303-320.
[10] 冯德益,等. 大地震活动的模糊时间分维特征[J]. 中国地震, 1991, 7(4): 1~10.
[11] 李留藏,等. 我国几次大震及震群活动时间分维特征[J]. 地震研究, 1993, 16(3): 229~238.
[12] 白超英,等. 地震前兆序列分维的初步研究[J]. 西北地震学报, 1990, 12(4):1~6.
[13] Kirkby M J. The hurst Effect and its implications for extropolating process rate[J]. Earth Surface Processes and Landforms. 1987, 12(1):57-67.
[14] 李新运,等. 山东省近600年旱涝时间序列分形特征[J]. 地理学与国土研究, 11(1): 41~46.
[15] Mcclelland L, et al. Global volcanism 1975-1985[M]. Prentice Hall. Englewood Cliffs[M]. 1989. 655.
[16] 林鸿溢. 分形论——奇异性探索[M]. 北京: 北京理工大学出版社, 1992.
[17] 李后强, 陈光钺. 分形与分维[M]. 成都: 四川教育出版社, 1990.