地形和气候对中国山地森林带界线的影响
作者简介:孙然好 (1981-), 男, 山东临沂人, 博士, 助理研究员, 主要从事景观规划与空间模型研究。E-mail: rhsun@rcees.ac.cn
收稿日期: 2012-01-09
要求修回日期: 2012-06-18
网络出版日期: 2013-02-20
基金资助
国家自然科学基金项目(41001111
41030528)资助
Effect of Regional Topographic and Climatic Factors on Limits of Altitudinal Forest Belts
Received date: 2012-01-09
Request revised date: 2012-06-18
Online published: 2013-02-20
Copyright
山地森林带界线对地形差异和气候变化敏感,是地学、生态学研究的重要内容。利用13个气候指标进行主成分分析,提取出中国31个自然地带的气候指数,包括夏季温度变异指数(STVI)、冬季温度变异指数(WTVI)和干旱指数(DI),3个气候指数符合地带性分布规律,STVI从南向北递减,WTVI以东部地区和南疆部分地区最高,DI则从东南向西北递增。基于文献发表的中国28个典型山体的森林带界线数据,将其与山体基面高度、山体相对高度和地带性气候指数进行多元回归分析。结果显示,山体基面高度对森林带下线南北坡差异贡献最大(39.67%),山体相对高度对森林带上线南北坡差异贡献最大(39.34%)。3个地带性气候指数的累积贡献对森林带上线南北差异、下线南北差异和带宽南北差异的影响差别不大,在51.4%~55.9%之间,其中STVI贡献最大,其次是WTVI和DI。通过定量揭示地形和气候要素对山地森林带界线差异的贡献,可以为区域或全球尺度的山地森林带界线评价和模拟提供参考。
孙然好 , 张百平 . 地形和气候对中国山地森林带界线的影响[J]. 地理科学, 2013 , 33(2) : 167 -173 . DOI: 10.13249/j.cnki.sgs.2013.02.167
The division of vegetation zones is an old and highly emphasized topic in both botany and geography. High mountains are characterized by different vegetation types at different elevations. Altitudinal vegetation belts are bounded by relatively narrow boundaries. Investigation and identification of altitudinal vegetation belts is significant in ecological and geographical studies due to extremely complex environment and diverse vegetation types in mountains. Altitudinal forest belts (AFBs) are significantly impacted by topographic and climatic factors. The climatic data used in this study were obtained from Chinese Ecosystem Research Network (CERN) between 1960 and 2000. After analyzing the significance of the 13 climatic factors in 31 base belts, we obtained three dominant principal components (PCs) designated as temperature variation index in winter (WTVI), temperature variation index in summer (STVI), and drought index (DI). WTVI decreased from South to North China, whereas STVI was high in South China and Tibetan Plateau. DI increased from the southwest to the northwest of China. Next, 28 AFB data were collected from published references. Multivariate regression analysis was used to quantify the relationship between AFB characteristics and topographic and climatic PCs. Results show that the base elevation of a mountain has the significant contribution to lower limits of AFBs (39.67%), whereas the relative elevation of a mountain has the significant contribution to upper limits of AFBs (39.34%). The climatic factors have similar contributions to variations in upper limits, lower limits, and width of AFBs. Among the three climatic PCs, STVI has the most contribution to variations of AFBs, followed by WTVI and DI. This paper quantifies the relative contributions of topographic and climatic factors to variations in AFBs at regional scales, and could potentially be used to evaluate and model the AFB distributions in other mountainous regions at regional or global scales.
Fig.1 Location of 31 base belts and 28 mountains in China图1 中国自然地带分布和28个代表性山体的位置 |
Table 1 Elevation and altitudinal forest limits of 28 mountains in China表1 中国28个代表性山体的海拔及森林带界线 |
代表山体 | 基面高度(m) | 海拔高度(m) | 南坡上线(m) | 南坡下线(m) | 北坡上线(m) | 北坡下线(m) |
---|---|---|---|---|---|---|
内蒙古奥克里堆山 | 500 | 1520 | 1400 | 700 | 1400 | 800 |
吉林长白山 | 250 | 2690 | 1540 | 845 | 2020 | 1650 |
山西恒山 | 1300 | 2300 | 2200 | 1900 | 2300 | 1900 |
内蒙古大青山 | 990 | 2400 | 1900 | 1300 | 2100 | 1700 |
宁夏贺兰山 | 1500 | 3700 | 3000 | 2200 | 3000 | 2000 |
新疆阿尔泰山 | 500 | 4374 | 2000 | 1200 | 2450 | 1200 |
甘肃兴隆山 | 1800 | 3620 | 2750 | 2200 | 2750 | 2200 |
宁夏大罗山 | 1850 | 2650 | 2650 | 2280 | 2650 | 2000 |
新疆果子沟 | 600 | 3900 | 2300 | 1100 | 2500 | 2000 |
辽宁本溪 | 0 | 1400 | 1400 | 900 | 1400 | 800 |
北京东灵山 | 800 | 2303 | 1800 | 900 | 2000 | 900 |
河南伏牛山 | 480 | 2211 | 2000 | 1100 | 2000 | 1600 |
陕西太白山 | 500 | 3767 | 3400 | 1000 | 3400 | 1300 |
安徽大别山 | 100 | 1750 | 1729 | 800 | 1750 | 700 |
陕西秦巴山区草链岭 | 600 | 2700 | 2600 | 1200 | 2600 | 1200 |
陕西秦巴山区鹰咀石 | 500 | 2700 | 2550 | 800 | 2550 | 800 |
湖北神农架 | 400 | 3106 | 3106 | 700 | 3106 | 1800 |
福建武夷山 | 200 | 2158 | 1700 | 200 | 2158 | 200 |
广西大瑶山 | 110 | 1979 | 1500 | 1300 | 1500 | 1300 |
湖南龙山 | 300 | 1514 | 1200 | 700 | 1350 | 700 |
海南五指山 | 100 | 1550 | 950 | 100 | 650 | 100 |
西藏南迦巴瓦峰 | 1300 | 6000 | 3400 | 1300 | 3000 | 1300 |
西藏珠穆朗玛峰波曲谷地 | 1500 | 8465 | 3400 | 2500 | 3500 | 2500 |
西藏珠穆朗玛峰甘马藏布河谷地 | 1500 | 8465 | 3600 | 2500 | 3800 | 2500 |
西藏珠穆朗玛峰吉隆河谷地 | 1500 | 4800 | 3800 | 3100 | 3600 | 3000 |
西藏珠穆朗玛峰绒辖曲谷地 | 1500 | 8465 | 3300 | 2500 | 3800 | 2500 |
西藏珠穆朗玛峰卓姆曲谷地 | 1500 | 8465 | 3800 | 2500 | 3800 | 2500 |
西藏东喜马拉雅山东段 | 0 | 6450 | 3750 | 600 | 4000 | 3200 |
Fig.2 Indices of temperature variations in winter(a)and summer(b) and humidity indices (c)for 31 base belts of China图2 中国31个自然地带的冬季温度变异指数(a)、夏季温度变异指数(b)和干旱指数(c) |
Table 2 Loading of climatic factors (13) on significant principal components for 31 base belts表2 利用气候指标提取的主成分因子 |
气候指标 | PC1 | PC2 | PC3 |
---|---|---|---|
1月最高温 | 0.977 | 0.067 | -0.131 |
1月最低温 | 0.942 | 0.282 | -0.143 |
7月最高温 | 0.344 | 0.903 | 0.182 |
7月最低温 | 0.443 | 0.867 | -0.056 |
年均干燥度 | -0.034 | 0.181 | 0.860 |
年降水量 | 0.707 | 0.311 | -0.604 |
年均温 | 0.820 | 0.560 | -0.059 |
≥10℃积温 | 0.728 | 0.664 | -0.061 |
≥0℃积温 | 0.749 | 0.648 | -0.086 |
温暖指数 | 0.755 | 0.638 | -0.094 |
生物温度 | 0.760 | 0.633 | -0.100 |
年均日照时数 | -0.532 | -0.461 | 0.635 |
年均太阳辐射 | -0.002 | -0.763 | 0.592 |
特征值 | 9.489 | 1.65 | 1.236 |
贡献率(%) | 72.989 | 12.689 | 9.507 |
累积贡献率(%) | 72.989 | 85.679 | 95.185 |
Table 3 Pearson correlation coefficients between altitudinal forest limits and climatic factors表3 山地森林带界线与地带性气候指数的相关性 |
上线南北差异 | 下线南北差异 | 林宽南北差异 | |
---|---|---|---|
冬季温度变异指数 | 0.339* | 0.386* | -0.21 |
夏季温度变异指数 | -0.422* | 0.458* | -0.412* |
干旱指数 | -0.36* | 0.154 | -0.334* |
Table 4 Multivariate regression results for altitudinal forest limits of 28 mountains表4 山地森林带界线坡向差异的多元线性回归模型 |
模型 | 模型系数及检验 | 模型检验 | |||||||
---|---|---|---|---|---|---|---|---|---|
非标准化系数 | t 统计值 | 容差 | 相对贡献率(%) | R2 | F值 | DW值 | |||
上线南北差异 | 常数项C | 0 | 0.52 | 3.19 (p=0.026) | 2.47 | ||||
基面海拔高度 | 0.11 | 0.52 | 0.54 | 4.74 | |||||
山体相对高度 | -0.95 | -3.21 | 0.3 | 39.34 | |||||
冬季温度变异指数 | 0.51 | 2.75 | 0.78 | 21.06 | 55.92 | ||||
夏季温度变异指数 | -0.59 | -1.81 | 0.25 | 24.64 | |||||
干旱指数 | -0.25 | -1.18 | 0.61 | 10.22 | |||||
下线南北差异 | 常数项C | 0 | 0.63 | 4.99 (p=0.003) | 1.6 | ||||
基面海拔高度 | 0.83 | 4.17 | 0.54 | 39.67 | |||||
山体相对高度 | -0.19 | -0.7 | 0.3 | 8.89 | |||||
冬季温度变异指数 | 0.35 | 2.08 | 0.78 | 16.49 | 51.43 | ||||
夏季温度变异指数 | 0.66 | 2.23 | 0.25 | 31.41 | |||||
干旱指数 | 0.07 | 0.4 | 0.61 | 3.54 | |||||
林宽南北差异 | 常数项C | 0 | 0.54 | 3.48 (p=0.018) | 1.38 | ||||
基面海拔高度 | -0.8 | -3.7 | 0.54 | 36.46 | |||||
山体相对高度 | -0.17 | -0.6 | 0.3 | 7.85 | |||||
冬季温度变异指数 | -0.16 | -0.88 | 0.78 | 7.21 | 55.69 | ||||
夏季温度变异指数 | -0.9 | -2.79 | 0.25 | 40.77 | |||||
干旱指数 | -0.17 | -0.83 | 0.61 | 7.71 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
/
〈 | 〉 |