商圈惠顾行为的空间衰减:幂律模式还是指数模式
岳丽莹(1988−),女,山东聊城莘县人,博士研究生,主要研究方向为人文地理学。E-mail: 52183500010@stu.ecnu.edu.cn |
收稿日期: 2019-11-23
网络出版日期: 2021-05-11
基金资助
教育部人文社会科学研究规划基金项目(16YJA790021)资助
版权
The Spatial Decay of Patronizing Behavior in Trade Areas: Power Law or Exponential Law
Received date: 2019-11-23
Online published: 2021-05-11
Supported by
Funding Project of Education of Ministry for the Development of Liberal Arts and Social Sciences (16YJA790021)
Copyright
岳丽莹 , 李山 , 李开明 , 张颖 , 刘杰 . 商圈惠顾行为的空间衰减:幂律模式还是指数模式[J]. 地理科学, 2021 , 41(3) : 446 -453 . DOI: 10.13249/j.cnki.sgs.2021.03.009
The spatial decay of retail patronizing behavior in trade areas exists objectively, but there is a controversy about the power law and exponential law and no conclusion on the distance-decay mode has been reached to date. Exploring spatial decay modes and parameters will help to optimize urban commercial space structure and provide scientific advices. Taking examples of 14 commercial centers in Shanghai, this study aims to analyze and validate the distance-decay law and its coefficients of retail travel behavior, based on mobile phone signaling data in 2013. We compare and examine the distance decay modes and coefficients of varying scale commercial centers in different leisure time. The results show that both power and exponential distance-decay modes have high goodness of fits, the adjusted R2 is greater than 0.6 for most of commercial centers. In comparison, power law function fits better slightly, but the advantage is not significant, the goodness of fit of the former is only slightly higher about 0.05 than the later. Meanwhile, the distance is still a key factor affecting retail travel behavior of urban residents, and distance-decay coefficient decreases with the size of commercial centers increasing, especially on weekday. Power-law distance decay coefficient is between 1 and 2 for commercial centers, which has strong spatiotemporal heterogeneity. Such as, the distance decay coefficient of Zhenru commercial center is up to 2.084, while that of East Nanjing road commercial center is 1.010. So the radiation capacity of commercial centers will be too overestimate or underestimate if given coefficient 1 or 2 is adopted. Another conclusion of this research is that the constraint effect of leisure time on retail travel behavior cannot be ignored. Compared with weekend, the distance decay parameter on weekday is larger, and the smaller the commercial center size is, the more significant the distance decay is. The coefficient differences between weekend and weekday for East Nanjing road and Xujiahui commercial centers are smaller, which is less than 0.3. While there are significant differences in varying leisure time for Zhenru and Zhonghuan commercial centers.
Key words: commercial center; Tobler’s first law; power law; exponential law; Shanghai
表 1 商业中心客流量及辐射距离Table 1 Customer volume and trip distance of different commercial centers |
商业中心 | 周末客流 | 工作日客流 | |||||
客流量/万人 | 平均距离/km | 最远距离/km | 客流量/万人 | 平均距离/km | 最远距离/km | ||
南京东路 | 12.23 | 6.53 | 17.37 | 8.94 | 6.66 | 15.26 | |
小陆家嘴−张扬路 | 11.37 | 5.73 | 15.76 | 10.24 | 7.45 | 16.95 | |
五角场 | 9.40 | 3.56 | 10.61 | 5.91 | 3.51 | 8.00 | |
淮海中路 | 8.70 | 5.23 | 14.09 | 7.30 | 5.95 | 14.18 | |
四川北路 | 8.45 | 3.42 | 10.64 | 6.87 | 4.27 | 11.02 | |
徐家汇 | 7.89 | 5.83 | 16.60 | 5.64 | 5.63 | 15.23 | |
南京西路 | 7.82 | 5.14 | 14.28 | 7.70 | 6.52 | 15.00 | |
中山公园 | 5.68 | 4.40 | 13.91 | 4.38 | 4.05 | 12.38 | |
豫园商城 | 4.23 | 5.03 | 16.28 | 2.82 | 3.52 | 12.52 | |
新虹桥−天山 | 3.82 | 3.32 | 10.65 | 3.89 | 3.68 | 10.87 | |
真如 | 2.78 | 1.94 | 7.85 | 2.54 | 2.47 | 6.53 | |
大宁 | 2.58 | 3.00 | 9.62 | 2.09 | 3.59 | 9.79 | |
中环(真北) | 2.14 | 2.62 | 8.47 | 1.67 | 2.69 | 7.91 | |
虹桥商务区 | 1.25 | 12.23 | 29.87 | 1.09 | 11.57 | 28.24 | |
国际旅游度假区 | 0.17 | 3.23 | 9.25 | 0.16 | 4.29 | 7.75 |
注:最远距离为按照距离邻近性80%累计客流量的最远辐射距离。作为规划中的市级商业中心,国际旅游度假区的核心吸引力是2013年尚未开业的迪士尼,由于客流量过少,后文将不对其进行分析。 |
表 2 2种距离衰减模式的参数比较Table 2 Coefficient comparison of two distance decay modes |
商业中心 | 距离衰减参数β | 调整的判定系数 Adj.R2 | |||||||||
幂律函数 | 指数函数 | 幂律函数 | 指数函数 | ||||||||
周末 | 工作日 | 周末 | 工作日 | 周末 | 工作日 | 周末 | 工作日 | ||||
虹桥商务区 | 0.992 | 1.110 | 0.064 | 0.070 | 0.365 | 0.327 | 0.261 | 0.234 | |||
南京东路 | 1.010 | 1.384 | 0.129 | 0.160 | 0.791 | 0.742 | 0.748 | 0.698 | |||
豫园商城 | 1.029 | 1.435 | 0.130 | 0.209 | 0.720 | 0.658 | 0.630 | 0.555 | |||
徐家汇 | 1.143 | 1.309 | 0.141 | 0.156 | 0.733 | 0.714 | 0.690 | 0.663 | |||
南京西路 | 1.152 | 1.389 | 0.171 | 0.161 | 0.750 | 0.726 | 0.696 | 0.689 | |||
淮海中路 | 1.223 | 1.782 | 0.193 | 0.219 | 0.785 | 0.763 | 0.729 | 0.706 | |||
中山公园 | 1.225 | 1.456 | 0.174 | 0.214 | 0.711 | 0.679 | 0.662 | 0.633 | |||
小陆家嘴 | 1.251 | 1.555 | 0.160 | 0.157 | 0.658 | 0.645 | 0.606 | 0.616 | |||
新虹桥−天山 | 1.422 | 1.724 | 0.267 | 0.270 | 0.604 | 0.607 | 0.542 | 0.544 | |||
四川北路 | 1.502 | 1.979 | 0.290 | 0.301 | 0.785 | 0.737 | 0.739 | 0.698 | |||
中环 | 1.810 | 2.633 | 0.447 | 0.578 | 0.596 | 0.635 | 0.549 | 0.570 | |||
大宁 | 1.818 | 2.369 | 0.385 | 0.414 | 0.660 | 0.626 | 0.601 | 0.559 | |||
五角场 | 1.881 | 2.581 | 0.402 | 0.584 | 0.835 | 0.796 | 0.845 | 0.782 | |||
真如 | 2.084 | 3.215 | 0.559 | 0.807 | 0.744 | 0.702 | 0.689 | 0.654 |
注:虹桥商务区商业中心主要是为满足虹桥交通枢纽来往客流的消费需求,且会展是该区域的主要功能之一,本文的样本数据为上海常住居民,因此拟合优度较低。 |
[1] |
王德, 王灿, 谢栋灿, 等. 基于手机信令数据的上海市不同等级商业中心商圈的比较——以南京东路、五角场、鞍山路为例[J]. 城市规划学刊, 2015, (3): 50- 60.
Wang De, Wang Can, Xie Dongcan et al. Comparison of retail trade areas of retail centers with different hierarchical levels: A case study of East Nanjing Road, Wujiaochang, Anshan road in Shanghai[J]. Urban Planning Forum, 2015, (3): 50- 60.
|
[2] |
Tobler W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46 (2): 234- 240.
|
[3] |
李山, 王铮, 钟章奇. 旅游空间相互作用的引力模型及其应用[J]. 地理学报, 2012, 67 (4): 526- 544.
Li Shan, Wang Zheng, Zhong Zhangqi. Gravity model for tourism spatial interaction: Basic form, parameter estimation, and applications[J]. Acta Geographica Sinica, 2012, 67 (4): 526- 544.
|
[4] |
刘继生, 陈彦光. 分形城市引力模型的一般形式和应用方法——关于城市体系空间作用的引力理论探讨[J]. 地理科学, 2000, 20 (6): 528- 533.
Liu Jisheng, Chen Yanguang. The gravitational models of fractal cities: Theoretical basis and applied methods[J]. Scientia Geographica Sinica, 2000, 20 (6): 528- 533.
|
[5] |
Chen Y. The distance-decay function of geographical gravity model: Power law or exponential law?[J]. Chaos, Solitons & Fractals, 2015, (77): 174- 189.
|
[6] |
Drezner T, Drezner Z. Validating the gravity-based competitive location model using inferred attractiveness[J]. Annals of Operations Research, 2002, 111 (1-4): 227- 237.
|
[7] |
Murad A A. Creating a GIS application for retail centers in Jeddah City[J]. International Journal of Applied Earth Observation, 2003, 4 (4): 229- 338.
|
[8] |
Huff D L. A programmed solution for approximating an optimum retail location[J]. Land Economics, 1966, 42 (3): 293- 303.
|
[9] |
Young W J. Distance decay values and shopping center size[J]. The Professional Geographer, 1975, 27 (3): 304- 309.
|
[10] |
周素红, 郝新华, 柳林. 多中心化下的城市商业中心空间吸引衰减率验证——深圳市浮动车GPS时空数据挖掘[J]. 地理学报, 2014, 69 (12): 1810- 1820.
Zhou Suhong, Hao Xinhua, Liu Lin. Validation of spatial decay law caused by urban commercial center’s mutual attraction in polycentric city: Spatio-temporal data mining of floating cars’ GPS data in Shenzhen[J]. Acta Geographica Sinica, 2014, 69 (12): 1810- 1820.
|
[11] |
Drezner T. Derived attractiveness of shopping malls[J]. IMA Journal of Management Mathematics, 2006, 17 (4): 349- 358.
|
[12] |
Yang Yue, Wang Handong, Hu Bo et al. Exploratory calibration of a spatial interaction model using taxi GPS trajectories[J]. Computers, Environment and Urban Systems, 2012, 36 (2): 140- 153.
|
[13] |
Matthias D B, Dirk V P, Nico V W. An extended Huff-model for robustly benchmarking and predicting retail network performance[J]. Applied Geography, 2014, (46): 80- 89.
|
[14] |
郑清菁, 戴特奇, 陶卓霖, 等. 重力模型参数空间差异研究——以中国城市间铁路客流为例[J]. 地理科学进展, 2014, 33 (12): 1659- 1665.
Zheng Qingjing, Dai Teqi, Tao Zhuolin et al. Spatial heterogeneity of gravity model parameters: A case study of intercity railway passenger flow in China[J]. Progress in Geography, 2014, 33 (12): 1659- 1665.
|
[15] |
姚丽贞, 乐阳. 基于主成分Logistic模型的商圈吸引力因子分析[J]. 地球信息科学学报, 2016, 18 (11): 1494- 1499.
Yao Lizhen, Yue Yang. Factor analysis of shopping center attractiveness based on principal component Logistic model[J]. Journal of Geo-information Science, 2016, 18 (11): 1494- 1499.
|
[16] |
陈阳, 岳文泽, 高佳斌. 城市商业综合体商圈划分及其对住宅的增值效应——以杭州主城区为例[J]. 经济地理, 2017, 37 (11): 68- 75.
Chen Yang, Yue Wenze, Gao Jiabin. Identifying commercial complex trade areas and its value-added impact on housing: The case of Hangzhou[J]. Economic Geography, 2017, 37 (11): 68- 75.
|
[17] |
Susilo Y O, Dijst M. Behavioural decisions of travel-time ratios for work, maintenance and leisure activities in the Netherlands[J]. Transport Planning and Technology, 2010, 33 (1): 19- 34.
|
[18] |
王芳, 牛方曲, 王志强. 微观尺度下基于商圈的北京市商业空间结构优化[J]. 地理研究, 2017, 36 (9): 1697- 1708.
Wang Fang, Niu Fangqu, Wang Zhiqiang. Commercial spatial structure optimization based on trade area analysis from a micro-scale perspective in Beijing[J]. Geographical Research, 2017, 36 (9): 1697- 1708.
|
[19] |
王德, 张晋庆. 上海市消费者出行特征与商业空间结构分析[J]. 城市规划, 2001, (10): 6- 14.
Wang De, Zhang Jinqing. The analysis of consumer trip characteristics and spatial structure of commercial facilities in Shanghai[J]. City Planning Review, 2001, (10): 6- 14.
|
[20] |
薛冰, 肖骁, 李京忠, 等. 基于POI大数据的沈阳市住宅与零售业空间关联分析[J]. 地理科学, 2019, 39 (3): 442- 449.
Xue Bing, Xiao Xiao, Li Jingzhong et al. POI-based spatial correlation of the residences and retail industry in Shenyang City[J]. Scientia Geographica Sinica, 2019, 39 (3): 442- 449.
|
[21] |
傅辰昊, 周素红, 闫小培, 等. 广州市零售商业中心消费活动时变模式及其影响因素[J]. 地理科学, 2018, 38 (1): 20- 30.
Fu Chenhao, Zhou Suhong, Yan Xiaopei et al. Temporal variation patterns and influencing factors of consuming activity in retailing centers: A case study of Guangzhou, China[J]. Scientia Geographica Sinica, 2018, 38 (1): 20- 30.
|
[22] |
柴彦威, 刘伯初, 刘瑜, 等. 基于多源大数据的城市体征诊断指数构建与计算——以上海市为例[J]. 地理科学, 2018, 38 (1): 1- 10.
Chai Yanwei, Liu Bochu, Liu Yu et al. Construction and calculation of diagnostic index of urban signs based on multi-source big data: Case of Shanghai[J]. Scientia Geographica Sinica, 2018, 38 (1): 1- 10.
|
[23] |
裘炜毅, 刘杰, 张颖. 手机大数据视角下的工业区职住平衡分析方法[C]//中国城市规划学会, 等.2015中国城市规划年会论文集. 北京: 中国建筑工业出版社, 2015: 503-512.
Qiu Weiyi, Liu Jie, Zhang Ying.Analysis of job balance in industrial area from the perspective of mobile phone data//Urban Planning Society of China et al.The proceedings of 2015 China urban planning annual conference.Beijing: China Architecture&Building Press, 2015: 503-512.
|
[24] |
Applebaum W. Methods for determining store trade areas, market penetration, and potential sales[J]. Journal of Marketing Research, 1966, 3 (2): 127- 141.
|
[25] |
王远飞, 张超. GIS和引力多边形方法在公共设施服务域研究中的应用——以上海浦东新区综合医院为例[J]. 经济地理, 2005, 25 (6): 800- 803+809.
Wang Yuanfei, Zhang Chao. GIS and gravity polygon based service area analysis of public facility: A case study of hospitals in Pudong new area[J]. Economic Geography, 2005, 25 (6): 800- 803+809.
|
[26] |
刘瑜, 龚俐, 童庆禧. 空间交互作用中的距离影响及定量分析[J]. 北京大学学报(自然科学版), 2014, 50 (3): 526- 534.
Liu Yu, Gong Li, Tong Qingxi. Quantifying the distance effect in spatial interactions[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50 (3): 526- 534.
|
[27] |
叶德珠, 连玉君, 黄有光, 等. 消费文化、认知偏差与消费行为偏差[J]. 经济研究, 2012, (2): 80- 92.
Ye Dezhu, Lian Yujun, Huang Youguang et al. Consumption culture, cognitive bias and consumption anomalies[J]. Economic Research, 2012, (2): 80- 92.
|
/
〈 |
|
〉 |