清末“回民起义”时期黄土高原中部土壤侵蚀和人地关系演变
王夏青(1986-),男,山西昔阳人,博士,副教授,主要从事流域生态与人地关系研究。E-mail: wangxq@huas.edu.cn |
收稿日期: 2020-12-10
修回日期: 2021-02-20
网络出版日期: 2022-02-20
基金资助
国家自然科学基金项目(41807390)
国家自然科学基金项目(42167062)
黄土与第四纪地质国家重点实验室开放基金课题(SKLLQG2007)
湖南省教育厅科研项目(19C1669)
应用经济学应用特色学科项目(2018]469)
版权
Variation in Soil Erosion and Environment-human Interaction at the Center of Loess Plateau During “The Riots of Hui” at the Late Qing Dynasty
Received date: 2020-12-10
Revised date: 2021-02-20
Online published: 2022-02-20
Supported by
National Natural Science Foundation of China(41807390)
National Natural Science Foundation of China(42167062)
Open Fund of State Key Laboratory of Loess and Quaternary Geology(SKLLQG2007)
Education Department of Hunan Province(19C1669)
Applied Economics Subject(2018]469)
Copyright
以黄土高原近现代规模最大的“回民起义”战争为切入点,结合不同地貌区合水和靖边聚湫重建的同时期侵蚀量、文献记录的人口数量和生态-社会状况,明确该事件驱动下的人地关系演变。黄土高原中南部高塬沟壑区的合水流域土壤侵蚀强度受战争影响有所减缓,归因于人口数量锐减后当地生态的快速自然恢复;战后人口增加未显著改变当地的生态平衡,展现出较高的生态承载力和弹性。中北部丘陵沟壑区的靖边聚湫在战争持续影响下土壤侵蚀显著增强,生态植被恢复缓慢且直至“禁垦期”达到与气候间的平衡态;人口激增后侵蚀强度和生态恶化再次加剧,具有较低的生态弹性。建议高塬沟壑区内近600 mm降水量区域的当代生态保护和可持续发展要以开发与保护并举,而丘陵沟壑区内近400 mm降水量的区域应以保护为主、坝库系统内的土地利用为辅,并重视“空心村”大量废弃土地的水土管理和科学利用。
王夏青 , 张秀云 , 周强 , 许建伟 , 张鹏钾 , 彭保发 . 清末“回民起义”时期黄土高原中部土壤侵蚀和人地关系演变[J]. 地理科学, 2022 , 42(2) : 303 -313 . DOI: 10.13249/j.cnki.sgs.2022.02.012
Based on the recent largest war “The Riots of Hui” on the Chinese Loess Plateau (CLP), the evolution of environment-human interaction by this event was rebuilt by combining with the erosion flux in the Heshui and Jingbian landslide-dammed reservoirs at the different geomorphic regions, population number and ecology-social status recorded by the related documents. A weakened soil erosion was presented under “The Riots of Hui” event in the Heshui catchment at the plateau-gully region, mainly due to the rapidly natural recovery of the local eco-environment while the population decreased sharply. However, although the population increased following the ending of this war, the local ecological balance was not significantly broken, showing a relatively higher ecological carrying capacity and resilience. On the other hand, an accelerated soil erosion occurred by this war in the Jingbian catchment at the hilly-gully region. Natural vegetation in this area recovered slowly, and climate (precipitation) and soil erosion reached a balanced state until the “Reclamation-forbidden Period”. Nevertheless, soil erosion and ecological pressure were intensified again once a population explosion, displaying lower ecological resilience. All above insights suggest that it should be combined with development and protection for contemporary ecological protection and sustainable development at the plateau-gully region with near 600 mm precipitation on the CLP, while protection should be priority supplementing with land use within the check-dams system at the hilly-gully region with near 400 mm precipitation. Besides, more attention should be paid to soil and water management and scientific utilization of abandoned lands in the “hollowing villages” on the CLP.
表1 黄土高原靖边和合水县域“回民起义”时期的人口数量及生态-社会-经济状况记录Table 1 The population and records of ecological-social-economical condition during “The Riots of Hui”in the Jingbian and Heshui counties on the Chinese Loess Plateau |
年份 | 人口数量/万人 | “回民起义”下生态-社会-经济状况的记录 | |
靖边 | 1823 | 7.48 | 同治六年(1867年),当地人口数量锐减,社会经济损失严重,商业活动毁灭性破坏,街镇一空,田园荒废,民不聊生。至清代末年(1898年),靖边周围千里大约明沙、扒拉、硷滩、柳勃居十之七八,有草之地,仅十之二三[27] |
1899 | 1.84 | ||
1912 | 2.25 | ||
1923 | 5.68 | ||
1928 | 3.01 | ||
合水 | 1760 | 5.49 | 同治二年(1863年)春,陕甘“回民起义”入董志塬。至九年,起义军至合水固城川[29]。至1906年,人口锐减,土地荒弃,生态植被有所恢复,长期闲置的黄土丘陵上长满了如同热带植物一样茂盛的各类植被,视线所及之处都是树木、灌木和棘刺丛。自河谷间、溪流旁会看到很多种宜于狩猎的鸟类[24] |
1908 | 0.87 | ||
1925 | 2.98 |
表2 黄土高原靖边和合水聚湫“回民起义”时期的年际产沙模数(ASSY)和年际降水量分布Table 2 The distributions of annual specific sediment yields (ASSY) and annual precipitation during “The Riots of Hui” in the Jingbian and Heshui reservoirs on the Chinese Loess Plateau |
靖边聚湫 | 合水聚湫 | |||||||||||
年份 | ASSY/ [104 t/(km2·a)] | 年际降 水量/mm | 年份 | ASSY/ [104 t/(km2·a)] | 年际降 水量/mm | 年份 | ASSY/ [104 t/(km2·a)] | 年际降 水量/mm | 年份 | ASSY/ [104 t/(km2·a)] | 年际降 水量/mm | |
1932 | 0.94 | 58.1 | 1895 | 0.61 | 50.2 | 1923 | 6.91 | 606.9 | 1887 | 0.81 | 110.0 | |
1926 | 2.33 | 162.6 | 1894 | 0.41 | 45.3 | 1921 | 5.05 | 455.1 | 1886 | 0.92 | 97.0 | |
1923 | 4.24 | 172.7 | 1893 | 2.96 | 142.2 | 1914 | 4.54 | 413.2 | 1885 | 0.21 | 40.7 | |
1921 | 2.02 | 84.1 | 1890 | 2.36 | 92.1 | 1911 | 15.32 | 1444.4 | 1884 | 8.38 | 792.2 | |
1919 | 4.84 | 222.8 | 1889 | 4.27 | 173.5 | 1910 | 4.74 | 430.2 | 1883 | 3.41 | 299.8 | |
1917 | 1.59 | 73.7 | 1888 | 1.20 | 64.2 | 1909 | 5.04 | 563.9 | 1871 | 10.78 | 1009.1 | |
1914 | 4.98 | 226.2 | 1887 | 5.30 | 198.2 | 1906 | 0.94 | 98.5 | 1868 | 20.61 | 2050.8 | |
1911 | 0.71 | 52.6 | 1885 | 1.80 | 149.8 | 1905 | 1.60 | 152.5 | - | - | - | |
1910 | 1.15 | 63.1 | 1884 | 1.06 | 60.9 | 1904 | 0.31 | 46.9 | - | - | - | |
1907 | 3.72 | 195.8 | 1883 | 0.60 | 50.0 | 1903 | 17.52 | 1667.8 | - | - | - | |
1906 | 4.55 | 180.3 | 1882 | 0.33 | 43.5 | 1898 | 0.33 | 48.6 | - | - | - | |
1904 | 0.78 | 54.2 | 1880 | 9.36 | 295.6 | 1897 | 2.27 | 206.8 | - | - | - | |
1903 | 3.23 | 148.6 | 1879 | 0.94 | 58.2 | 1896 | 2.28 | 229.1 | - | - | - | |
1898 | 0.09 | 37.8 | 1873 | 5.15 | 230.2 | 1895 | 2.28 | 295.2 | - | - | - | |
1897 | 0.35 | 43.9 | 1872 | 0.64 | 50.9 | 1894 | 3.81 | 331.9 | - | - | - | |
1896 | 2.80 | 102.7 | 1871 | 1.28 | 66.2 | 1889 | 1.12 | 113.0 | - | - | - |
[1] |
Lewis D L, Maslin M A. Defining the Anthropocene[J]. Nature, 2015, 519(7542): 171-180.
|
[2] |
Steffen W, Broadgate W, Deutsch L et al. The trajectory of the Anthropocene: The Great Acceleration[J]. The Anthropocene Review, 2015, 2(1): 81-98.
|
[3] |
Richter D D, Mobley M L. Monitoring earth’s critical zone[J]. Science, 2009, 326: 1067-1068.
|
[4] |
朱永官, 李刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2015, 70(12): 1859-1869.
Zhu Yongguan, Li Gang, Zhang Ganlin et al. Soil security: From Earth’s critical zone to ecosystem services. Acta Geographica Sinica, 2015, 70(12): 1859-1869.
|
[5] |
Poesen J. Soil erosion in the Anthropocene: Research needs[J]. Earth Surface Process and Landforms, 2018, 43: 64-84.
|
[6] |
Bajard M, Etienne D, Sebastien Q et al. Legacy of early anthropogenic effects on recent lake eutrophication (Lake Benit, northern French Alps)[J]. Anthropocene, 2018, 24: 72-87.
|
[7] |
Fu B J, Wang S, Liu Y et al. Hydrogeomophic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J]. Annual Review of Earth and Planetary Sciences, 2017, 45: 223-243.
|
[8] |
Chen Y P, Wang K B, Lin Y S et al. Balancing green and grain trade[J]. Nature Geoscience, 2015, 10(8): 739-741.
|
[9] |
金钊, 王云强, 高光耀, 等. 地球关键带与地表通量综合观测研究为黄土高原生态保护和可持续发展提供有力的科技支撑[J]. 中国科学院院刊, 2020, 35(3): 378-387.
Jin Zhao, Wang Yunqiang, Gao Guangyao et al. Comprehensive Earth critical zone observation and terrestrial surface flux monitoring provide strong scientific support for ecological protection and regional sustainable development on the Loess Plateau of China. Bulletin of Chinese Academy of Sciences, 2020, 35(3): 378-387.
|
[10] |
Jiang C, Zhang H Y, Wang X C et al. Challenging the land degradation in China’s Loess Plateau: Benefits, limitations, sustainability, and adaptive strategies of soil and water conservation[J]. Ecological Engineering, 2019, 127: 135-150.
|
[11] |
Wang S, Fu B J, Piao S L et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1): 1-5.
|
[12] |
Cao S X, Xia C Q, Xian J L et al. Payoff of the Grain for Green policy[J]. Journal of Applied Ecology, 2020, 57(6): 1180-1188.
|
[13] |
Wen X, Zhen L. Soil erosion control practices in the Chinese Loess Plateau: A systematic review[J]. Environmental Development, 2020, 34: 100493
|
[14] |
穆兴民, 胡春宏, 高鹏, 等. 黄河输沙量研究的几个关键问题与思考[J]. 人民黄河, 2017, 39(8): 1-4,48.
Mu Xingmin, Hu Chunhong, Gao Peng et al. Key issues and reflections of research on sediment flux of the Yellow River. Yellow River, 2017, 39(8): 1-4,48.
|
[15] |
Shi P, Zhang Y, Ren Z P et al. Land-use changes and check dams reducing runoff and sediment yield on the Loess Plateau of China[J]. Science of the Total Environment, 2019, 664: 984-994.
|
[16] |
Zhang X B, Walling D E, He X et al. Use of landslide-dammed lake deposits and pollen tracing techniques to investigate the erosional response of a small drainage basin in the Loess Plateau, China, to land use change during the late 16th century[J]. Catena, 2009, 9(3): 205-213.
|
[17] |
Tang Q, Wang S, Fu B J et al. Check dam infilling archives elucidate historical sedimentary dynamics in a semiarid landscape of the Loess Plateau, China[J]. Ecological Engineering, 2018, 118: 161-170.
|
[18] |
Wei Y H, He Z, Li Y J et al. Sediment yield deduction from check-dams deposition in the weathered sandstone watershed on the north Loess Plateau, China[J]. Land Degradation & Development, 2017, 28: 217-231.
|
[19] |
张凤宝, 杨明义, 张加琼, 等. 黄土高原淤地坝沉积泥沙在小流域土壤侵蚀研究中的应用[J]. 水土保持通报, 2018, 38(6): 365-371.
Zhang Fengbao, Yang Mingyi, Zhang Jiaqiong et al. Progress on application of sediment in check dam to study soil erosion of small watershed on Loess Plateau. Bulletin of Soil and Water Conservation, 2018, 38(6): 365-371.
|
[20] |
王夏青, 夏梦婷, 许建伟, 等. 黄土高原北部丘陵沟壑区近160年土壤侵蚀量演变及其对ENSO事件的响应[J]. 地理科学, 2019, 39(7): 1174-1183.
Wang Xiaqing, Xia Mengting, Xu Jianwei et al. Erosion flux change and its response to ENSO events during the past 160 years within the hill-gully area at the northern Loess Plateau. Scientia Geographica Sinica, 2019, 39(7): 1174-1183.
|
[21] |
龙翼, 张信宝, 李敏, 等. 陕北子州黄土丘陵区古聚湫洪水沉积层的确定及其产沙模数的研究[J]. 科学通报, 2009, 54(1): 73-78.
Long Yi, Zhang Xinbao, Li Min et al. Identification of the deposited layers in landslides reservoir and investigation of the sediment yields during the later sixteenth century on the Hill Loess Plateau, China. Chinese Science Bulletin, 2009, 54(1): 73-78.
|
[22] |
潘登. 清同治“陕甘回变”研究[D]. 咸阳: 西藏民族大学, 2016.
Pan Deng. The study on “The riots of Hui” in Shaanxi and Gansu Province in Thongzhi age. Xianyang: Xizang Minzu University, 2016.
|
[23] |
雷兴鹤. 清代甘肃陇东农业经济发展与环境变迁问题探析[J]. 西安石油大学学报(社会科学版), 2014, 23(3): 31-36.
Lei Xinghe. Analyses on the agricultural economic development and environment variation in Longdong of Gansu in Qing Dynasty. Journal of Xi’an Shiyou University (Social Science), 2014, 23(3): 31-36.
|
[24] |
任泉香. 清至民国陇东土地利用变迁及驱动力研究[D]. 西安: 陕西师范大学, 2003.
Ren Quanxiang. Research on the change of land use and its driving force in Longdong (Qing Dynasty-Minguo Period). Xi’an: Shaanxi Normal University, 2003.
|
[25] |
Cao Z, Li Y, Liu Y et al. When and where did the Loess Plateau turn “green”? Analysis of the tendency and breakpoints of the normalized difference vegetation index[J]. Land Degradation & Development, 2018, 29(1): 162-175.
|
[26] |
Wang X Q, Jin Z D, He Z et al. New insights into dating the sediment sequence within a landslide-dammed reservoir on the Chinese Loess Plateau[J]. The Holocene, 2019, 29(6): 1020-1029.
|
[27] |
靖边县地方志编纂委员会. 靖边县志[M]. 西安: 陕西人民出版社, 1993.
Local Annals of Jingbian County Editorial Committees. Annals of Jingbian County. Xi’an: Shaanxi People Press, 1993.
|
[28] |
Wang X Q, Wang Z S, Xiao J et al. Soil erosion fluxes on the central Chinese Loess Plateau during CE 1811 to 1996 and the roles of monsoon storms and human activities[J]. Catena, 2021, 200: 105148
|
[29] |
合水县志编纂委员会. 合水县志[M]. 兰州: 甘肃文化出版社, 2007.
Annals of Heshui County Editorial Committees. Annals of Heshui County. Lanzhou: Gansu Culture Press, 2007.
|
[30] |
布鲁斯C D. 走出西域: 沿着马可波罗足迹旅行[M].周力, 译. 北京: 海潮出版社, 2002.
Bruce C D. In the footsteps of Marco-polo: Being the account of a journey overland from Simla to Pekin. Translated by Zhou Li.Beijing: Haichao Press, 2002.
|
[31] |
Wang X Q, Jin Z D, Chen L M et al. High-resolution X-ray fluorescence core scanning of landslide-dammed reservoir sediment sequences on the Chinese Loess Plateau: New insights into the formation and geochemical processes of annual freeze-thaw layers[J]. Geoderma, 2016, 279: 122-131.
|
[32] |
Wang X Q, Jin Z D, Zhang X B et al. High-resolution geochemical records of deposition couplets in a palaeolandslide-dammed reservoir on the Chinese Loess Plateau and its implication for rainstorm erosion[J]. Journal of Soils and Sediments, 2018, 18: 1147-1158.
|
[33] |
金章东, 王夏青, 张信宝, 等. 黄土高原聚湫沉积旋回、土壤侵蚀及区域差异[J]. 第四纪研究, 2017, 37(6): 1161-1171.
Jin Zhangdong, Wang Xiaqing, Zhang Xinbao et al. Soil erosion recorded by deposition couplets in landslide-dammed reservoirs on the Chinese Loess Plateau and its regional difference. Quaternary Sciences, 2017, 37(6): 1161-1171.
|
[34] |
王晗. 人口变化、土地利用和环境变化关系研究——以清至民国陕北黄土高原为例[D]. 西安: 陕西师范大学, 2008.
Wang Han. A study on the relationship between population change, land use and environmental change: A case of the Loess Plateau from Qing Dynasty to the Republic of China. Xi’an: Shaanxi Normal University, 2008.
|
[35] |
Garcia-Ruiz J M. The effects of land uses on soil erosion in Spain: A review[J]. Catena, 2010, 81: 1-11.
|
[36] |
Prosdocimi M, Cerda A, Tarolli P. Soil water erosion on Mediterranean vineyards: A review[J]. Catena, 2016, 141: 1-21.
|
[37] |
张秀鹏, 于立新, 张飞飞, 等. 县域尺度的农村空心化程度综合评估研究[J]. 中国人口·资源与环境, 2016, 26(11): 162-167.
Zhang Xiupeng, Yu Lixin, Zhang Feifei et al. Research on the comprehensive evaluation method of the rural hollow degree in county level. China Population, Resources and Environment, 2016, 26(11): 162-167.
|
[38] |
陈怡平, 张义. 黄土高原丘陵沟壑区乡村可持续振兴模式[J]. 中国科学院院刊, 2019, 34(6): 708-716.
Chen Yiping, Zhang Yi. Sustainable model of rural vitalization in hilly and gully region on Loess Plateau. Bulletin of Chinese Academy of Sciences, 2019, 34(6): 708-716.
|
[39] |
Rodrigo-Comino J, Seeger M, Iserloh T et al. Rainfall-simulated quantification of initial soil erosion processes in sloping and poorly maintained terraced vineyards—Key issues for sustainable management systems[J]. Science of the Total Environment, 2019, 660: 1047-1057.
|
/
〈 |
|
〉 |