中国市域间日常人口流动特征及影响因素
施响(1993−),女,辽宁沈阳人,博士,助研,主要从事城市地理与区域规划、流动空间研究。E-mail: shixiang@jlu.edu.cn |
收稿日期: 2021-04-15
修回日期: 2022-01-09
网络出版日期: 2022-11-20
版权
Characteristics and Influencing Factors of Daily Population Flow Among Cities in China
Received date: 2021-04-15
Revised date: 2022-01-09
Online published: 2022-11-20
Copyright
基于腾讯位置大数据,分析了2015—2018年中国368个城市间人口流动的空间格局,并基于指数随机图模型(ERGM)识别了与人口流入、流出相关的影响因素。研究发现:① 人口流动的空间分布格局相对稳定,形成了以京、深、沪、穗、蓉、莞为“中枢”的菱形空间结构。② 通过社区划分得到的城市子群结构表明,社区间呈现明显的地理临近和省际分异特征,既形成了以省会城市为核心、受省界制约明显的中心–腹地结构的小型城市子群,也形成了跨越省界的多中心结构的大型城市子群,但大部分城市以省界为主要流动圈层,省域内人口流动更为密切。③ ERGM模型确定的人口流入、流出网络影响因素与新古典经济学理论相一致,人口规模、城市化水平、时间成本、经济成本等市场因素和经济因素在人口流动中仍然具有主导性作用。④ 城市对外来人口的吸引力更大程度上取决于自身的属性特征,而城市人口外流更依赖于外部网络关联要素,一定程度上验证了推拉理论中城市“拉力”的主导力量,以及各类距离因素的综合作用。
施响 , 王士君 , 王冬艳 , 浩飞龙 , 李卓伟 . 中国市域间日常人口流动特征及影响因素[J]. 地理科学, 2022 , 42(11) : 1889 -1899 . DOI: 10.13249/j.cnki.sgs.2022.11.004
Using Tencent location big data, this study analyzes the spatial pattern of population flow among 368 cities in China and identifies the influencing factors related to population inflow and outflow based on an exponential random graph model (ERGM). 1) From 2015 to 2018, the spatial distribution pattern of population flow was relatively stable, forming a rhombic spatial structure with Beijing, Shenzhen, Shanghai, Guangzhou, Chengdu, and Dongguan as the ‘center’. The densely populated nodes and channels are mainly concentrated to the east of the Hu Huanyong Line. The significance of this study lies in further determining the core cities and main pillars in the population flow network. 2) The urban subgroup structure obtained by community division shows obvious geographical proximity and inter-provincial differentiation among communities, which form not only small urban subgroups with the provincial capital city forming the core and bordered by the provincial boundary, but also large urban subgroups with a multi-center structure spanning provincial administrative boundaries. However, for most cities, the provincial boundary delimits the main flow circle, and population flow within the same province is more frequent. 3) The influencing factors of the population inflow and outflow networks determined by the ERGM model are consistent with the predictions of neoclassical economics. Market and economic factors such as population scale, urbanization level, time cost, and economic cost still play a leading role in population flow. 4) The attraction of a city to the floating population depends on its individual attributes, while the urban population outflow depends more on the external-network-related elements of the city. To a certain extent, this study verifies the predominance of the urban “pull” in the push-pull theory and the comprehensive effect of various distance factors.
Key words: population flow; Tencent location big data; ERGM; migrant
表1 ERGM模型中的变量定义Table 1 Variable definition in ERGM model |
变量 | 计量单位 | 定义 | |
网络结构效应 | 边缘数 | 无 | 人口流动网络中连接数 |
互惠性 | 无 | 网络节点是否倾向于形成交互 | |
节点属性效应 | 人口规模 | 万人 | 城市的户籍人口规模 |
二产结构 | % | 第二产业增加值占国内生产总值比重 | |
三产结构 | % | 第三产业增加值占国内生产总值比重 | |
教育水平 | 元/人 | 人均技术支出 | |
科技水平 | 元/人 | 人均教育支出 | |
城市化水平 | 无 | 土地城市化、人口城市化、经济城市化和社会城市化的综合测度 | |
经济规模 | 元/人 | 人均GDP | |
外生网络效应 | 地理距离 | km | 地球表面上城市间最短距离 |
时间距离 | min | 城市间所有铁路车次出行时间的平均值 | |
经济距离 | 元 | 城市间所有铁路车次出行票价的平均值 | |
制度距离 | 无 | 城市间是否跨越省级行政区(是=1,否=0) | |
高铁连通度 | 无 | 城市间是否有高铁(是=1,否=0) | |
高速连通度 | 无 | 城市间是否有高速(是=1,否=0) |
表2 人口流动网络的影响因素分析Table 2 Analysis of the factors affecting the population flow networks |
人口流出网络 | 人口流入网络 | ||||
(1) | (2) | (3) | (4) | ||
注:括号内数值为P值,* 、**、***分别代表变量在10%,5%,1%水平下显著;空白为无此项。 | |||||
网络结构效应 | |||||
边缘数 | −4.49149 (<1e-04)*** | −4.28501 (<1e-04)*** | −4.49183 (<1e-04)*** | −4.26362 (<1e-04)*** | |
互惠性 | 4.70789 (<1e-04)*** | 4.60989 (<1e-04)*** | 4.68381 (<1e-04)*** | 4.65761 (<1e-04)*** | |
节点属性效应 | |||||
经济规模 | 9.62969 (0.884887) | 8.90485 (0.884142) | |||
人口规模 | −1.53909 (0.001178)** | 0.45459 (0.0011775)** | |||
二产结构 | −8.81496 (0.89458) | −8.50411 (0.893914) | |||
三产结构 | −1.59955 (0.112897) | −0.46686 (0.1128975) | |||
科技水平 | −0.26842 (0.329531) | 1.33565 (0.336121) | |||
教育水平 | 2.57122 (0.582948) | 2.63779 (0.557048) | |||
城市化水平 | 0.92069 (0.012087)* | 0.92069 (0.0120885)* | |||
外部网络效应 | |||||
高铁连通度 | 2.21651 (<1e-04)*** | 0.16682 (<1e-04)*** | |||
高速连通度 | 0.51851 (<1e-04)*** | 0.19283 (<1e-04)*** | |||
地理距离 | −2.81816 (<1e-04)*** | −0.35489 (<1e-04)*** | |||
时间距离 | −1.92137 (<1e-04)*** | −0.21347 (<1e-04)*** | |||
经济距离 | −1.0689 (0.000467)*** | −0.08442 (0.0005)*** | |||
制度距离 | −1.85178 (<1e-04)*** | −0.05274 (<1e-04)*** | |||
Akaike Inf. Crit. | 23068 | 23745 | 23088 | 42794 | |
Bayesian Inf. Crit. | 23088 | 23891 | 23107 | 42920 |
[1] |
国家卫生健康委员会. 中国流动人口发展报告2018 [M/OL].http://www.gov.cn/xinwen/2018-12/25/content_5352079.htm,2018.12.25.
China National Health Commission. China’s floating population development report 2018.http://www.gov.cn/xinwen/2018-12/25/content_5352079.htm,2018.12.25.
|
[2] |
Ravenstein E G. The laws of migration[J]. Journal of the Royal Statistical Society, 1889, 52(2): 241-305
|
[3] |
Lee E S. A theory of migration[J]. Demography, 1966, 3: 47-57
|
[4] |
Kristian B, Yasuhiro S. Migration, skill formation, and the wage structure[J]. Journal of Regional Science, 2011, 51(1): 5-30
|
[5] |
Sjaastad L A. The costs and returns of human migration[J]. Journal of Political Economy, 1962, 70(5): 80-93
|
[6] |
Mueser P R, Graves P E. Examining the role of economic opportunity and amenities in explaining population redistribution[J]. Journal of Urban Economics, 1995, 37(2): 176-200
|
[7] |
Alessandra F, Vicente R. Migration flows and quality of life in a metropolitan area: The case of Barcelona-Spain[J]. Applied Research in Quality of Life, 2010, 5(3): 241-259
|
[8] |
Cai F, Wang D. Migration as marketization: What can we learn from China’s 2000 census data?[J]. The China Review, 2003, 3(2): 73-93
|
[9] |
Huo J, Wang X, Zhao N et al. Statistical characteristics of dynamics for population migration driven by the economic interests[J]. Physica A: Statistical Mechanics and its Applications, 2016, 451(6): 123-134
|
[10] |
Shen J. Increasing internal migration in China from 1985 to 2005: Institutional versus economic drivers[J]. Habitat International, 2013, 39: 1-7
|
[11] |
Wang Y, Dong L, Liu Y et al. Nationwide migration patterns in China extracted from mobile positioning data[J]. Habitat International, 2019, 86: 71-80
|
[12] |
Wang Y, Wang F, Zhang Y et al. Delineating urbanization “source-sink” regions in China: Evidence from mobile app data[J]. Cities, 2019, 86: 167-177
|
[13] |
Xu J, Li A, Li D et al. Difference of urban development in China from the perspective of passenger transport around spring festival[J]. Applied Geography, 2017, 87: 85-96
|
[14] |
Zhang K H, Song S. Rural-urban migration and urbanization in China: Evidence from time-series and cross-section analyses[J]. China Economic Review, 2003, 14(4): 386-400
|
[15] |
Cao Z, Zheng X, Liu Y et al. Exploring the changing patterns of China’s migration and its determinants using census data of 2000 and 2010[J]. Habitat International, 2018, 82: 72-82
|
[16] |
Liu Y, Shen J. Jobs or amenities? Location choices of interprovincial skilled migrants in China, 2000-2005[J]. Population Space and Place, 2014, 20(7): 592-605
|
[17] |
Liu C, Otsubo K, Wang Q et al. Spatial and temporal changes of floating population in China between 1990 and 2000[J]. Chinese Geographical Science, 2007, 17(2): 99-109
|
[18] |
Shen J, Liu Y. Skilled and less-skilled interregional migration in China: A comparative analysis of spatial patterns and the decision to migrate in 2000-2005[J]. Habitat International, 2016, 57: 1-10
|
[19] |
Dash Nelson G, Rae A. An economic geography of the United States: From commutes to mega regions[J]. Plos One, 2016, 11(11): e0166083
|
[20] |
Wei Y, Song W, Xiu C et al. The rich-club phenomenon of China’s population flow network during the country’s spring festival[J]. Applied Geography, 2018, 96(5): 77-85
|
[21] |
Windzio M. The network of global migration 1990-2013 Using ERGMs to test theories of migration between countries[J]. Social Networks, 2018, 53: 20-29
|
[22] |
Fan C C. Interprovincial migration, population redistribution, and regional development in China: 1990 and 2000 census comparisons[J]. The Professional Geographer, 2005, 57(2): 295-311
|
[23] |
Chen R S, Ye C, Cai Y L et al. The impact of rural outmigration on land use transition in China: Past, present and trend[J]. Land Use Policy, 2014, 40: 101-110
|
[24] |
Yan X H, Bauer S, Huo X X. Farm size, land reallocation, and labour migration in rural China[J]. Population Space and Place, 2014, 20(4): 303-315
|
[25] |
Shen J. Explaining interregional migration changes in China, 1985-2000, using a decomposition approach[J]. Regional Studies, 2015, 49(7): 1176-1192
|
[26] |
Qi J, Wang Z, Wang Y et al. Visualization and analysis on the spatial temporal patterns of flow direction of interprovincial migration in China based on origin destination matrix[J]. Procedia Environmental Sciences, 2015, 26: 115-118
|
[27] |
Pan J, Lai J. Spatial pattern of population mobility among cities in China: Case study of the National Day plus Mid-Autumn Festival based on Tencent migration data[J]. Cities, 2019, 94: 55-69
|
[28] |
Yang X, Fang Z, Yin L et al. Understanding the spatial structure of urban commuting using mobile phone location data: A case study of Shenzhen, China[J]. Sustainability, 2018, 10(5): 14-35
|
[29] |
Levin N, Lechner A M, Brown G. An evaluation of crowd sourced information for assessing the visitation and perceived importance of protected areas[J]. Applied Geography, 2017, 79: 115-126
|
[30] |
Liu X, Kang C, Gong L et al. Incorporating spatial interaction patterns in classifying and understanding urban land use[J]. International Journal of Geographical Information Science, 2016, 30(2): 334e350
|
[31] |
Matthew E B. Exponential random graph models for social networks: Theory, methods, and applications[J]. Contemporary Sociology:A Journal of Reviews, 2014, 43(4): 552-553
|
[32] |
Zhen F, Cao Y, Qin X et al. Delineation of an urban agglomeration boundary based on Sina Weibo microblog “check-in” data: A case study of the Yangtze River Delta[J]. Cities, 2017, 60: 180-191
|
[33] |
Halás M, Klapka P, Tonev P. The use of migration data to define functional regions: The case of the Czech Republic[J]. Applied Geography, 2016, 76: 98-105
|
[34] |
Xia C, Zhang A, Wang H et al. Bidirectional urban flows in rapidly urbanizing metropolitan areas and their macro and micro impacts on urban growth: A case study of the Yangtze River middle reaches megalopolis, China[J]. Land Use Policy, 2019, 82: 158-168
|
[35] |
Long Y. Redefining Chinese city system with emerging new data[J]. Applied Geography, 2016, 75: 36-48
|
[36] |
Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E Statistical Nonlinear Soft Matter Physics, 2004, 69(2 Pt 2): 26113.
|
[37] |
Contractor N S, Wasserman S, Faust K. Testing multi theoretical, multilevel hypotheses about organizational networks: An analytic framework and empirical example[J]. Academy of Management Review, 2006, 31(3): 681703
|
[38] |
Zhang W, Chong Z, Li X et al. Spatial patterns and determinant factors of population flow networks in China: Analysis on Tencent Location Big Data[J]. Cities, 2020, 99(C): 102640-102640
|
[39] |
靳诚, 陆玉麒. 区域旅游一体化进程中边界效应的定量化研究——以长江三角洲地区入境旅游为例[J]. 旅游学刊, 2008, 23(10): 34-39
Jin Cheng, Lu Yuqi. A quantitative study on boundary effect in the course of regional tourism integration—Taking inbound tourism in Yangtze River Delta Region as an example. Tourism Tribune, 2008, 23(10): 34-39
|
[40] |
劳昕, 沈体雁. 中国地级以上城市人口流动空间模式变化——基于2000和2010年人口普查数据的分析[J]. 中国人口科学, 2015, 29(1): 15-28+126
Lao Xin, Shen Tiyan. Spatial pattern of China’s internal migration and higher level cities: Evidence from the 2000 and 2010 population census data. Chinese Journal of Population Science, 2015, 29(1): 15-28+126
|
[41] |
杨传开, 宁越敏. 中国省际人口迁移格局演变及其对城镇化发展的影响[J]. 地理研究, 2015, 34(8): 1492-1506
Yang Chuankai, Ning Yuemin. Evolution of spatial pattern of inter-provincial migration and its impacts on urbanization in China. Geographical Research, 2015, 34(8): 1492-1506
|
[42] |
张耀军, 岑俏. 中国人口空间流动格局与省际流动影响因素研究[J]. 人口研究, 2014, 38(5): 54-71
Zhang Yaojun, Cen Qiao. Spatial patterns of population mobility and determinants of inter-provincial migration in China. Population Research, 2014, 38(5): 54-71
|
[43] |
刘晏伶, 冯健. 中国人口迁移特征及其影响因素——基于第六次人口普查数据的分析[J]. 人文地理, 2014, 29(2): 129-137
Liu Yanling, Feng Jian. Characteristics and impact factors of migration in China: Based on the analysis of the sixth census data. Human Geography, 2014, 29(2): 129-137
|
/
〈 |
|
〉 |