东北地区PM2.5质量浓度遥感估算与时空分布特征
吴迪(1993—),女,黑龙江哈尔滨人,硕士,工程师,主要从事生态气象遥感应用研究。E-mail: wudinuist@163.com |
收稿日期: 2022-06-12
修回日期: 2023-01-01
网络出版日期: 2023-10-20
基金资助
国家重点研发计划项目(2017YFC0212302)
国家重点研发计划项目(2017YFC0212304)
版权
Remote sensing estimation and spatial-temporal distribution of PM2.5 concentration in Northeast China
Received date: 2022-06-12
Revised date: 2023-01-01
Online published: 2023-10-20
Supported by
National Key R&D Program of China(2017YFC0212302)
National Key R&D Program of China(2017YFC0212304)
Copyright
利用2014—2018年近地面观测PM2.5质量浓度数据、MODIS 10 km气溶胶光学厚度(Aerosol Optical Depth, AOD)数据、ERA5再分析气象数据和DEM(Digital Elevation Model)数据,分别构建估算东北地区PM2.5质量浓度的多元线性回归模型(Multiple Linear Regression, MLR)、线性混合效应模型(Linear Mixed Effects Model, LME)和随机森林模型(Random Forest, RF),利用十折交叉验证方法对3个模型进行精度评价。根据最优模型估算2009—2018年东北地区逐日PM2.5质量浓度,结果表明:① 3种模型模拟的PM2.5质量浓度与地面实测值间的相关系数R2排序为RF>LME>MLR,RF模型整体精度最高。② 不同季节、月份的RF模型模拟PM2.5质量浓度与地面实测值间的R2均高于0.93,通过RF模型估算东北地区的PM2.5质量浓度是可行的;③ 2009—2018年东北地区PM2.5质量浓度呈先升后降的年际变化趋势,同时表现为冬季>春季>秋季>夏季的季节性变化特征;从空间分布上看,PM2.5质量浓度由西南到东北逐渐降低,总体上辽宁>吉林>黑龙江。
吴迪 , 高枞亭 , 李建平 , 马艳敏 , 穆佳 , 吴玉洁 . 东北地区PM2.5质量浓度遥感估算与时空分布特征[J]. 地理科学, 2023 , 43(10) : 1869 -1878 . DOI: 10.13249/j.cnki.sgs.2023.10.018
At present, the regional air environment problem characterized by PM2.5 has become increasingly prominent. The atmosphere particulate pollution occurred frequently in Northeast China over past years which is one of the main regions of air pollution. The spatial distribution of near-surface PM2.5 stations is sparse, and time series of data are short. Therefore, using the near-surface PM2.5 concentration data can not analyse the variation of reginal air pollution. Based on near-surface PM2.5 concentration data, MODIS 10 km aerosol optical depth (AOD), ERA5 reanalysis meteorological data and digital elevation model (DEM), multiple linear regression (MLR), linear mixed effects (LME) model and random forest model (RF) were selected to estimate PM2.5 concentration in Northeast China from 2014 to 2018. The accuracies of three models were evaluated by means of ten-fold cross validation. On that basis, the optimal model was used to simulate daily PM2.5 concentration in Northeast China from 2009 to 2018. The results showed that: 1) Correlation coefficients (R2) between the estimated and observed PM2.5 concentration by three models were ranked as RF>LME>MLR. The RF model had the highest accuracy. 2) TheR2 of the estimated and observed PM2.5 concentration by RF model was higher than 0.93 in different seasons and months. It was feasible to estimate PM2.5 concentration in Northeast China by RF model. 3) The annual average PM2.5 concentration showed interannual trend of first increasing then decreasing in Northeast China from 2009 to 2018. And it had seasonal variation characteristics of winter>spring>autumn> summer. In addition, the average PM2.5 concentration decreased gradually from southwest to northeast, that was shown as Liaoning>Jilin>Heilongjiang. By establishing a long time-series PM2.5 concentration dataset, this study contributes to estimate the spatial-temporal distribution of PM2.5 concentration, and also may be useful to analyse the weather change characteristics and formation mechanism of heavy pollution in Northeast China.
Key words: PM2.5 concentration; random forest model; Northeast China
表1 MODIS AOD数据月平均空间缺值率Table 1 Monthly averaged spatial vacancy rate of MODIS AOD data |
月份 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 |
平均缺值率/% | 94.6 | 91.2 | 77.2 | 61.0 | 61.4 | 66.0 | 67.7 | 65.3 | 51.1 | 44.5 | 71.7 | 93.2 |
表2 建模数据描述性统计Table 2 Descriptive statistical parameters of modeling data |
最大值 | 最小值 | 平均值 | 标准差 | |
PM2.5/(μg/m3) | 968.00 | 1.00 | 29.72 | 32.77 |
AOD | 3.50 | 0.01 | 0.46 | 0.45 |
DEM/m | 476.00 | 1.00 | 121.10 | 82.03 |
TMP/℃ | 32.44 | -26.30 | 10.27 | 10.67 |
ET/mm | 0.08 | -0.62 | -0.01 | 0.03 |
BLH/m | 2697.81 | 10.02 | 229.62 | 251.58 |
WS/(m/s) | 13.86 | 0.13 | 3.18 | 1.61 |
SP/hPa | 1041.11 | 917.21 | 994.89 | 17.74 |
RH/% | 99.96 | 2.89 | 61.43 | 18.02 |
PRE/mm | 8.85 | 0.00 | 0.02 | 0.19 |
[1] |
陈卫卫, 刘阳, 吴雪伟, 等. 东北区域空气质量时空分布特征及重度污染成因分析[J]. 环境科学, 2019, 40(11): 4810-4823.
Chen Weiwei, Liu Yang, Wu Xuewei et al. Spatial and temporal characteristics of air quality and cause analysis of heavy pollution in Northeast China. Environmental Science, 2019, 40(11): 4810-4823.
|
[2] |
段杰雄, 翟卫欣, 程承旗, 等. 中国PM2.5污染空间分布的社会经济影响因素分析[J]. 环境科学 2018, 39(5): 2498-2504.
Duan Jiexiong, Zhai Weixin, Cheng Chengqi et al. Socio-economic factors influencing the spatial distribution of PM2.5 concentrations in China: An exploratory analysis. Environmental Science 2018, 39(5): 2498-2504.
|
[3] |
王跃思, 张军科, 王莉莉, 等. 京津冀区域大气霾污染研究意义、现状及展望[J]. 地球科学进展, 2014, 29(3): 388-396.
Wang Yuesi, Zhang Junke, Wang Lili et al. Researching significance, status and expectation of haze in Beijing-Tianjin-Hebei region. Advances in Earth Science, 2014, 29(3): 388-396.
|
[4] |
郭新彪, 魏红英. 大气PM2.5对健康影响的研究进展[J]. 科学通报 2013, 58(13): 1171-1177.
Guo Xinbiao, Wei Hongying. Progress on the health effects of ambient PM2.5 pollution. Chinese Scicece Bulletin (Chinese Version) 2013, 58(13): 1171-1177.
|
[5] |
Yang Y, Luo L W, Song C et al. Spatiotemporal assessment of PM2.5 related economic losses from health impacts during 2014-2016 in China[J]. International Journal of Environmental Research and Public Health 2018, 15(6): 1278
|
[6] |
王子峰, 曾巧林, 陈良富, 等. 利用卫星遥感数据估算PM2.5浓度的应用研究进展[J]. 环境监控与预警 2019, 11(5): 33-38.
Wang Zifeng, Zeng Qiaolin, Chen Liangfu et al. Research progress of methodology and applications of PM2.5 estimation using satellite remote sensing. Environmental Monitoring and Forewarning 2019, 11(5): 33-38.
|
[7] |
陈良富, 陶金花, 王子峰, 等. 空气质量卫星遥感监测技术进展[J]. 大气与环境光学学报, 2015, 10(2): 117-125.
Chen Liangfu, Tao Jinhua, Wang Zifeng et al. Review of satellite remote sensing of air quality. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 117-125.
|
[8] |
沈焕锋, 李同文. 大气PM2.5遥感制图研究进展[J]. 测绘学报 2019, 48(12): 1624-1635.
Shen Huanfeng, Li Tongwen. Progress of remote sensing mapping of atmospheric PM2.5. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1624-1635.
|
[9] |
武卫玲, 薛文博, 付飞, 等. 近地面PM2.5浓度卫星反演研究进展[J]. 环境与可持续发展 2014, 39(5): 94-96.
Wu Weiling, Xue Wenbo, Fu Fei et al. Overview of surface-level PM2.5 concentration retrieval with satellite AOD. Environment and Sustainable Development 2014, 39(5): 94-96.
|
[10] |
Zou B, Chen J W, Zhai L et al. Satellite based mapping of ground PM2.5 concentration using generalized additive modeling[J]. Remote Sensing 2017, 9(1): 1
|
[11] |
Wang W, Mao F Y, Du L et al. Deriving hourly PM2.5 concentrations from Himawari-8 AODs over Beijing-Tianjin-Hebei in China[J]. Remote Sensing 2017, 9(8): 858
|
[12] |
Donkelaar A V, Martin R V, Brauer M et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application[J]. Environmental Health Perspectives, 2010, 118(6): 847-855.
|
[13] |
Geng G N, Zhang Q, Martin R V et al. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model[J]. Remote Sensing of Environment 2015, 166: 262-270.
|
[14] |
Zhang Y, Li Z Q. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation[J]. Remote Sensing of Environment 2015, 160: 252-262.
|
[15] |
Lin C Q, Li Y, Yuan Z B et al. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5[J]. Remote Sensing of Environment, 2015, 156: 117-128.
|
[16] |
孙成, 王卫, 刘方田, 等. 基于线性混合效应模型的河北省PM2.5浓度时空变化模型研究[J]. 环境科学研究 2019, 32(9): 1500-1509.
Sun Cheng, Wang Wei, Liu Fangtian et al. Spatial-temporal simulation of PM2.5 concentration in Hebei Province based on mixed effects model. Research of Environmental Sciences 2019, 32(9): 1500-1509.
|
[17] |
Wei J, Li Z Q, Cribb M et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees[J]. Atmospheric Chemistry and Physics 2020, 20(6): 3273-3289.
|
[18] |
Hu X F, Waller L A, Lyapustin A et al. Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model[J]. Remote Sensing of Environment 2014, 140: 220-232.
|
[19] |
Mehdipour V, Stevenson D S, Memarianfard M et al. Comparing different methods for statistical modeling of particulate matter in Tehran, Iran[J]. Air Quality, Atmosphere & Health, 2018, 11: 1155-1165.
|
[20] |
夏晓圣, 陈菁菁, 王佳佳, 等. 基于随机森林模型的中国PM2.5浓度影响因素分析[J]. 环境科学 2020, 41(5): 2057-2065.
Xia Xiaosheng, Cheng Jingjing, Wang Jiajia et al. PM2.5 concentration influencing factors in China based on the random forest model. Environmental Science 2020, 41(5): 2057-2065.
|
[21] |
杨立娟. 基于两层随机森林模型估算中国东部沿海地区的PM2.5浓度[J]. 国土资源遥感 2020, 32(4): 137-144.
Yang Lijuan. Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model. Remote Sensing for Land and Resources 2020, 32(4): 137-144.
|
[22] |
Gao Z T, Hu Z Z, Jha Bhaskar et al. Variability and predictability of Northeast China climate during 1948-2012[J]. Climate Dynamics, 2014, 43(7-8): 787-804.
|
[23] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
|
[24] |
Khosravi I, Alavipanah S K. A random forest-based framework for crop mapping using temporal, spectral, textural and polarimetric observations[J]. International Journal of Remote Sensing, 2019, 40(17-18): 1-31.
|
[25] |
Huang K, Xiao Q Y, Meng X et al. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain[J]. Environmental Pollution 2018, 242: 675-683.
|
[26] |
Meng C, Cheng T H, Gu X F et al. Contribution of meteorological factors to particulate pollution during winters in Beijing[J]. Science of the Total Environment, 2019, 656: 977-985.
|
[27] |
张萌铎, 陈卫卫, 高超, 等. 东北地区大气污染物源排放时空特征: 基于国内外清单的对比分析[J]. 地理科学, 2020, 40(11): 1940-1948.
Zhang Mengduo, Chen Weiwei, Gao Chao et al. Spatio-temporality of anthropogenic air pollutants in Northeast China based on current emission inventories. Scientia Geographica Sinica, 2020, 40(11): 1940-1948.
|
[28] |
崔妍, 赵春雨, 周晓宇, 等. 东北地区近50年来霾天气气候特征[J]. 中国环境科学, 2016, 36(6): 1630-1637.
Cui Yan, Zhao Chunyu, Zhou Xiaoyu et al. Climatic characteristics of haze days in Northeast of China over the past 50 years. China Environmental Science, 2016, 36(6): 1630-1637.
|
[29] |
朱于红. MODIS C006气溶胶产品评估及其在省域大气污染研究中的应用[D]. 杭州: 浙江大学, 2015.
Zhu Yuhong. Evaluation of MODIS aerosol product collection 006 and its application to air pollution research in Zhejiang Province. Hangzhou: Zhejiang University, 2015.
|
[30] |
何月欣, 张学磊, 陈卫卫, 等. 基于多卫星遥感的东北地区霾污染时空特征研究[J]. 环境科学学报, 2018, 38(2): 607-617.
He Yuexin, Zhang Xuelei, Chen Weiwei et al. Spatial-temporal characteristics of regional air quality in Northeastern China based on multi-satellites aerosol products. Acta Scientiae Circumstantiae, 2018, 38(2): 607-617.
|
[31] |
李莘莘, 陈良富, 陶金花, 等. 城市与冬季北方亮目标地区气溶胶光学厚度反演[J]. 中国科学: 地球科学, 2012, 42(8): 1253-1263.
Li Shenshen, Chen Liangfu, Tao Jinhua et al. Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter. Science China: Earth Science, 2012, 42(8): 1253-1263.
|
/
〈 |
|
〉 |