基于 Sentinel-2 影像东北秋季典型湖泊大气校正方法适用性评价
李勇(1996—),男,河南驻马店人,硕士研究生,主要从事大气校正与水色遥感研究。E-mail: lw208016@163.com |
收稿日期: 2022-09-27
修回日期: 2023-02-14
网络出版日期: 2024-01-20
基金资助
国家自然科学基金(U23A2008)
国家自然科学基金(42201414)
国家自然科学基金(42171374)
市院科技创新合作专项(21SH10)
国家民用空间基础设施陆地观测卫星共性应用支撑平台(2017-000052-73-01-001735)
吉林省与中国科学院科技合作高技术产业化专项资金项目(2021SYHZ0002)
版权
Evaluation of atmospheric correction processors for Sentinel-2 imagery for typical lakes in Northeast China in autumn
Received date: 2022-09-27
Revised date: 2023-02-14
Online published: 2024-01-20
Supported by
National Natural Science Foundation of China(U23A2008)
National Natural Science Foundation of China(42201414)
National Natural Science Foundation of China(42171374)
Municipal Academy of Science and Technology Innovation Cooperation Project(21SH10)
Common Application Support Platform for National Civil Space Infrastructure Land Observation Satellites(2017-000052-73-01-001735)
Jilin Province and the Chinese Academy of Sciences Science and Technology Cooperation High-tech Industrialization Special Fund Project(2021SYHZ0002)
Copyright
本文利用6S (Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF (Dark spectrum fitting)、C2RCC (Case 2 Regional Coast Color)、SeaDas (SeaWiFS Data Analysis System)、Sen2Cor (Sentinel 2 Correction)、Polymer (Polynomial based algorithm applied to MERIS)和iCOR (Image correction for atmospheric effects)7种大气校正算法,结合松花湖、月亮泡、小兴凯湖实测遥感反射率数据对“哨兵-2号”(Sentinel-2)数据进行大气校正研究,验证算法性能。整体校正结果显示,相较于实测遥感反射率,上述7种大气校正算法均在可见光波段(400~800 nm)呈现不同程度的低估。除C2RCC算法外,其余6种算法校正后的遥感反射率与实测光谱曲线变化趋势基本吻合,其中Sen2Cor算法与iCOR算法性能最佳,Polymer算法性能最差;在单波段校正精度对比中,Sen2Cor和iCOR算法几乎所有波段的均方根误差和平均绝对百分比误差都低于其余5种算法。Sen2Cor算法在560 nm、665 nm和705 nm处校正精度优于其余6种算法,iCOR算法在443 nm和740 nm处有良好的表现,在490 nm处6S算法校正精度最高,拥有最低的均方根误差(0.0059 sr-1)和平均绝对百分比误差(21.40%)。结果表明,这7种大气校正算法均可以在一定程度上去除大气影响,增加影像的可用性,Sen2Cor算法和iCOR算法更适用于本文所研究水体或相似水体。
关键词: 大气校正; Sentinel-2卫星; 内陆湖泊水体; 遥感反射率
李勇 , 李思佳 , 宋开山 , 徐茂林 , 刘阁 . 基于 Sentinel-2 影像东北秋季典型湖泊大气校正方法适用性评价[J]. 地理科学, 2024 , 44(1) : 149 -158 . DOI: 10.13249/j.cnki.sgs.20220807
Quantitative inversion of lake water quality parameters is the most widely used field of lake remote sensing, and the atmospheric correction is one of the key steps to determine the inversion accuracy. In this study, seven atmospheric correction processors, e.g., 6S, Acolite DSF, C2RCC, SeaDas, Sen2Cor, Polymer and iCOR, were used to validate the performances of processors with in situ Remote Sensing Reflectance in the Songhua Lake, the Yueliangpao Lake and the Xiaoxingkai Lake, respectively. From the overall comparison results, these seven atmospheric correction processors had low estimation results comparing with in situ reflectance measurement in visible bands (400-800 nm). Of which, the Sen2Cor and iCOR processors has the best performance, and the Polymer processors has the worst performance, considering the accuracy. All processors performed well and showed a similar tendency with in situ reflectance considering MSI bands, excepted for C2RCC. For the validation performance of single bands, the root mean square error and mean absolute percentage error of Sen2Cor and iCOR processors are lower than the other five processors in almost all bands. Sen2Cor processor worked best at 560 nm, 665 nm and 705 nm, and iCOR processor performed is better than other algorithms at 443 nm and 740 nm, 6S processor has the highest calibration accuracy at 490 nm, with the lowest root mean square error (0.0059 sr-1) and average absolute percentage error (21.40%). Further, our study on the validation of seven atmospheric correction processors indicated that they can remove atmospheric influence and increase the availability of imagery, as well as the Sen2Cor and iCOR preformed best and was more appropriate for studied lakes or lakes with similar aquatic environments.
表1 Sentinel-2卫星波段设置Table 1 Sentinel-2 satellite band setting |
波段序号 | 中心波长/nm | 波宽/nm | 分辨率/m | 波段序号 | 中心波长/nm | 波宽/nm | 分辨率/m | |
波段1 | 443 | 20 | 60 | 波段8 | 842 | 115 | 10 | |
波段2 | 490 | 65 | 10 | 波段8A | 865 | 20 | 20 | |
波段3 | 560 | 35 | 10 | 波段9 | 945 | 20 | 60 | |
波段4 | 665 | 30 | 10 | 波段10 | 1375 | 30 | 60 | |
波段5 | 705 | 15 | 20 | 波段11 | 1610 | 90 | 20 | |
波段6 | 740 | 15 | 20 | 波段12 | 2190 | 180 | 20 | |
波段7 | 783 | 20 | 20 |
[1] |
Gordon H R, Wang M. Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm[J]. Applied Optics, 1994, 33(3): 443-452.
|
[2] |
Morel A, Prieur L. Analysis of variations in ocean color[J]. Limnology and Oceanography, 1977, 22(4): 709-722.
|
[3] |
Wang M, Antoine D, Deschamps P Y et al. Atmospheric correction for Remotely-Sensed Ocean-Color Products [R]. Canada: International Ocean-Colour Coordinating Group, 2010: 15-58.
|
[4] |
Ilori C O, Pahlevan N, Knudby A. Analyzing performances of different atmospheric correction techniques for Landsat 8: Application for coastal remote sensing[J]. Remote Sensing, 2019, 11(4): 469.
|
[5] |
龚燃. 哨兵-2A光学成像卫星发射升空[J]. 国际太空, 2015(8): 36-40.
Gong Ran. Sentinel-2A satellite launches. International Space, 2015(8): 36-40.
|
[6] |
姚杰鹏, 杨磊库, 陈探, 等. 基于Sentinel-1, 2和Landsat 8时序影像的鄱阳湖湿地连续变化监测研究[J]. 遥感技术与应用, 2021, 36(4): 760-776.
Yao Jiepeng, Yang Leiku, Chen Tan et al. Consecutive monitoring of the Poyang Lake Wetland by Integrating Sentinel-2 with Sentinel-1 and Landsat 8 Data. Remote Sensing Technology and Application, 2021, 36(4): 760-776.
|
[7] |
Vanhellemont Q, Ruddick K. Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters[J]. Remote Sensing of Environment, 2021, 256: 112284.
|
[8] |
Renosh P R, Doxaran D, Keukelaere L D et al. Evaluation of atmospheric correction algorithms for sentinel-2 MSI and sentinel-3 OLCI in highly turbid estuarine waters[J]. Remote Sensing, 2020, 12(8): 1285.
|
[9] |
Martins V S, Barbosa C C F, De Carvalho L A S et al. Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes[J]. Remote Sensing, 2017, 9(4): 322.
|
[10] |
董舜丹, 何宏昌, 付波霖, 等. 基于Landsat-8陆地成像仪与Sentinel-2多光谱成像仪传感器的香港近海海域叶绿素a浓度遥感反演[J]. 科学技术与工程, 2021, 21(20): 8702-8712.
Dong Shundan, He Hongchang, Fu Bolin et al. Remote sensing inversion of chlorophyll a concentration in Hong Kong coastal waters based on Landsat-8 operational land imager and Sentinel-2 multispectral imager sensors. Science Technology and Engineering, 2021, 21(20): 8702-8712.
|
[11] |
谢勇, 李凯云, 李家国, 等. Sentinel-2A影像珠海市污染水体识别[J]. 遥感信息, 2021, 36(3): 1-9.
Xie Yong, Li Kaiyun, Li Jiaguo et al. Water pollution identification in Zhuhai city based on sentinel-2 imagery. Remote Sensing Information, 2021, 36(3): 1-9.
|
[12] |
刘宇晨, 高永年. Sentinel时序影像的长江流域地表水体提取[J]. 遥感学报, 2022, 26(2): 358-372.
Liu Yuchen, Gao Yongnian. Surface water extraction in Yangtze River Basin based on sentinel time series image. National Remote Sensing Bulletin, 2022, 26(2): 358-372.
|
[13] |
杨雷, 禹定峰, 高皜, 等. Sentinel-2的胶州湾水体透明度遥感反演[J]. 红外与激光工程, 2021, 50(12): 515-521.
Yang Lei, Yu Dingfeng, Gao Hao et al. Remote sensing retrieval of secchi disk depth in Jiaozhou Bay using Sentinel-2 MSI image. Infrared and Laser Engineering, 2021, 50(12): 515-521.
|
[14] |
潘嫄嫄, 李长春, 马潇潇, 等. Sentinel-2A卫星大气校正方法及校正效果[J]. 遥感信息, 2018, 33(5): 41-48.
Pan Yuanyuan, Li Changchun, Ma Xiaoxiao et al. Atmospheric correction method of Sentinel-2A satellite and result analysis. Remote Sensing Information, 2018, 33(5): 41-48.
|
[15] |
苏伟, 张明政, 蒋坤萍, 等. Sentinel-2卫星影像的大气校正方法[J]. 光学学报, 2018, 38(1): 322-331.
Su Wei, Zhang Mingzheng, Jiang Kunping et al. Atmospheric correction method for Sentinel-2 satellite imagery. Acta Optica Sinica, 2018, 38(1): 322-331.
|
[16] |
穆超, 刘振宇, 孟丹. 基于Sentinel-2卫星数据的内陆湖泊水体大气校正[J]. 测绘通报, 2021(9): 9-14.
Mu Chao, Liu Zhenyu, Meng Dan. Atmospheric correction of inland lake water based on Sentinel-2 satellite data. Bulletin of Surveying and Mapping, 2021(9): 9-14.
|
[17] |
程云轩, 赵可, 张越, 等. 松花湖沉积物溶解性有机质荧光光谱特性[J]. 环境科学, 2022, 43(4): 1941-1949.
Cheng Yunxuan, Zhao Ke, Zhang Yue et al. Fluorescence spectral characteristics of dissolved organic matter in Songhua Lake sediment. Environmental Science, 2022, 43(4): 1941-1949.
|
[18] |
方芳, 杨雪玲, 张志强, 等. 月亮泡水体营养状况评价[J]. 中国地方病防治杂志, 2010, 25(1): 27-29.
Fang Fang, Yang Xueling, Zhang Zhiqiang et al. Study on eutrophication of Yueliang Lake. Chinese Journal of Control of Endemic Disenaces, 2010, 25(1): 27-29.
|
[19] |
郑恺原, 向小华. 基于AHM-CRITIC赋权的小兴凯湖水质评价模型[J]. 节水灌溉, 2020(9): 79-83.
Zheng Kaiyuan, Xiang Xiaohua. Water quality evaluation model of Xiaoxingkai Lake based on AHM-CRITIC weighting. Water Saving Irrigation, 2020(9): 79-83.
|
[20] |
国家环保总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002.
The State Environmental Protection Administration the Water and Wastewater Monitoring Analysis Method Editorial Board. Water and wastewater monitoring analysis method. 4th edition. Beijing: China Environmental Science Press, 2002.
|
[21] |
唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ: 水面以上测量法[J]. 遥感学报, 2004(1): 37-44.
Tang Junwu, Tian Guoliang, Wang Xiaoyong et al. The methods of water spectra measurement and analysis Ⅰ: Above-water method. Journal of Remote Sensing, 2004(1): 37-44.
|
[22] |
Novoa S, Doxaran D, Ody A et al. Atmospheric corrections and multi-conditional algorithm for multi-sensor remote sensing of suspended particulate matter in low-to-high turbidity levels coastal waters[J]. Remote Sensing, 2017, 9(1): 61.
|
[23] |
Vermote E F, Tanré D, Deuze J L et al. Second simulation of the satellite signal in the solar spectrum, 6S: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 675-686.
|
[24] |
卢昭羿. 内陆水体多源卫星遥感大气校正方法研究[D].北京: 中国科学院遥感与数字地球研究所, 2019.
Lu Zhaoyi. Research on atmospheric correction method for multi-source satellite remote sensing of inland water. Beijing: Institute of Remote Sensing and Digital Earth, the Chinese Academy of Sciences, 2019.
|
[25] |
Knaeps E, Ruddick K G, Doxaran D et al. A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters[J]. Remote Sensing of Environment, 2015, 168: 66-79.
|
[26] |
Vanhellemont Q, Ruddick K. Acolite for Sentinel-2: Aquaticapplications of MSI imagery[C]//Proceedings of the 2016 ESALiving Planet Symposium. Prague: European Space Agency, 2016: 9-13.
|
[27] |
Doerffer R, Schiller H. The MERIS case 2 water algorithm[J]. International Journal of Remote Sensing, 2007, 28(3-4): 517-535.
|
[28] |
Brockmann C, Doerffer R, Peters M et al. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters[C]//Proceedings of the 2016 ESA Living Planet Symposium. Prague: European Space Agency, 2016, 740: 54.
|
[29] |
霍娟, 吕达仁. 晴空与有云大气辐射分布的数值模拟及其对全天空图像云识别的应用[J]. 气象学报, 2006(1): 31-38.
Huo Juan, Lyu Daren. Characteristics and distribution of all-sky radiance by libradtran modeling: For cloud determination algorithm in all-sky images. Acta Meteorologica Sinica, 2006(1): 31-38.
|
[30] |
Antoine D, Morel A. Relative importance of multiple scattering by air molecules and aerosols in forming the atmospheric path radiance in the visible and near-infrared parts of the spectrum[J]. Applied Optics, 1998, 37(12): 2245-2259.
|
[31] |
De Keukelaere L, Sterckx S, Adriaensen S et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters[J]. European Journal of Remote Sensing, 2018, 51(1): 525-542.
|
[32] |
吕恒, 李新国, 江南. 基于反射光谱和模拟MERIS数据的太湖悬浮物遥感定量模型[J]. 湖泊科学, 2005, 17(2): 104-109.
Lyu Heng, Li Xinguo, Jiang Nan. Estimation of suspended solids concentration in Lake Taihu using spectral reflectance and simulated MERIS. Journal of Lake Sciences, 2005, 17(2): 104-109.
|
[33] |
程春梅, 韦玉春, 李渊, 等. 太湖水体GF-1/WFV影像的6S逐像元大气校正[J]. 遥感技术与应用, 2020, 35(1): 141-152.
Cheng Chunmei, Wei Yuchun, Li Yuan et al. Atmospheric correction of GF-1/WFV image in Taihu Lake based on the 6S model pixel by pixel. Remote Sensing Technology and Application, 2020, 35(1): 141-152.
|
[34] |
张兵, 李俊生, 申茜, 等. 长时序大范围内陆水体光学遥感研究进展[J]. 遥感学报, 2021, 25(1): 37-52.
Zhang Bing, Li Junsheng, Shen Qian et al. Recent research progress on long time series and large scale optical remote sensing of inland water. Journal of Remote Sensing, 2021, 25(1): 37-52.
|
/
〈 |
|
〉 |