全球海底光缆网络的脆弱性结构及区域抗毁性评价
谢永顺(1994—),男,河北石家庄人,博士,助理研究员,主要从事交通地理与全球海运、低碳转型与可持续发展研究。E-mail: xieys@mail.tsinghua.edu.cn |
收稿日期: 2022-12-13
修回日期: 2023-02-22
网络出版日期: 2024-04-08
基金资助
国家自然科学基金项目(42071151)
中国博士后科学基金资助(2023M741886)
版权
Vulnerability structure of global submarine optical cable network and evaluation of regional survivability
Received date: 2022-12-13
Revised date: 2023-02-22
Online published: 2024-04-08
Supported by
National Natural Science Foundation of China(42071151)
China Postdoctoral Science Foundation(2023M741886)
Copyright
海底光缆作为跨区域连通性基础设施对于社会经济乃至国防安全至关重要,并且时刻面临着自然或人为的破坏风险。然而,当前对海底光缆网络脆弱性的探索仍受限于局部网络与国家尺度。基于此,本文以信息港为节点构建全球海底光缆网络,结合复杂网络理论与仿真模拟手段设计了完备的评价方法,依次对其网络脆弱性进行分析、枢纽信息港进行划分、区域抗毁性进行测度。结果表明:① “海缆”网络在受到随机攻击时较为健壮,在遭受蓄意攻击时较为脆弱,尤其是针对具备中转、衔接功能的信息港进行攻击将极易造成网络崩溃;② 枢纽信息港在“海缆”网络中呈极核结构,中介中心性前5名、前10名、前19名以及点度中心性前19名、前34名、前63名为枢纽信息港第一、第二、第三等级的划分标准,是网络连通受损、局部崩溃、完全崩溃3种状态的关键阈值,其中新加坡、开普敦、英格兰西海岸区、佛罗里达等信息港及其周围海域需要予以网络安全方面的重点关注;③ 区域抗毁性水平存在显著的区际差异,欧洲、北美等地区较高,东亚、南亚与中南亚等地区尚有很大的优化空间。研究成果可为海底光缆网络结构的优化提供参考和决策支持。
谢永顺 , 张琦琦 , 王成金 . 全球海底光缆网络的脆弱性结构及区域抗毁性评价[J]. 地理科学, 2024 , 44(3) : 411 -420 . DOI: 10.13249/j.cnki.sgs.20220541
Submarine optical cables play a vital role in social economy development, and national defense and security. Submarine optical cables are always facing the risk of natural or man-made damage. However, the current researches of the vulnerability of submarine optical cable network are still limited to local network and national scale. In this article, we construct the global submarine optical cable network with information ports as nodes, and design a set of evaluation method combining complex network theory and simulation tools to analyze network vulnerability, classify hub information ports, and measure regional survivability in turn. The research results are as follows: 1) The submarine optical cable network has typical scale-free and small-world characteristics, and its vulnerability structure, which is not significant under random attacks but significant under deliberate attacks, is confirmed by simulation. In the deliberate attack mode, the submarine optical cable network is more sensitive to intermediary centrality attacks than point-degree centrality attacks, and it can be assumed that the transit and bridging functions of the information port are more critical to the vulnerability structure of the network. 2) The submarine optical cable network shows three states of “connectivity damage” “partial collapse”, and “complete collapse” in order with the increase of attack level. Accordingly, 66 hub information ports are identified and classified into 3 levels. The hub information ports appear the characteristic of polar core structure in the submarine optical cable network, and echo the main sea lanes, which are the main reasons for the vulnerability structure of the submarine optical cable network. Singapore, Cape Town, England’s west coast area, Florida and other information ports and their surrounding waters need to be focused on security. 3) The redundant connections of hub information ports make the submarine optical cable network have a certain self-regulation mechanism. However, the regional survivability levels vary greatly in space, specifically showing that Europe and North America have higher survivability levels, while East Asia, South Asia and South-Central Asia have midstream destructivity levels, Central America and North Asia have the lowest destructivity levels, and there is still much room for optimization. Overall, the research results can provide reference and decision support for the optimization of submarine optical cable network structure.
表1 全球海底光缆网络各区域的抗毁性指数Table 1 Invulnerability index of each region of global submarine optical cable network |
排名 | 区域 | 中介中心性重要程度B | 点度中心性重要程度D | 抗毁性指数 Inv | ||||||||||
p1 | p2 | p3 | r2 | r3 | p1 | p2 | p3 | r2 | r3 | |||||
注:p1、p2、p3分别为第1、第2、第3等级信息港的数量,代表重要程度;r2、r3分别代表第2、第3等级信息港对区域抗毁性贡献水平的权重。 | ||||||||||||||
1 | 欧洲 | 2 | 1 | 3 | 0.422 | 1.248 | 2 | 2 | 3 | 0.670 | 0.656 | 5.952 | ||
2 | 撒哈拉以南非洲 | 1 | 0 | 0 | 0.000 | 0.000 | 7 | 7 | 6 | 0.451 | 0.362 | 3.832 | ||
3 | 北美 | 1 | 3 | 0 | 0.887 | 0.000 | 1 | 1 | 0 | 0.945 | 0.000 | 3.232 | ||
4 | 西亚与中亚 | 0 | 0 | 2 | 0.000 | 1.000 | 3 | 2 | 2 | 0.727 | 0.438 | 2.833 | ||
5 | 南亚与东南亚 | 1 | 0 | 0 | 0.000 | 0.000 | 2 | 2 | 6 | 0.397 | 0.216 | 1.772 | ||
6 | 南美 | 0 | 1 | 1 | 1.317 | 0.063 | 1 | 1 | 1 | 0.542 | 0.545 | 1.557 | ||
7 | 东亚 | 0 | 0 | 0 | 0.000 | 0.000 | 2 | 2 | 3 | 0.525 | 0.482 | 1.124 | ||
8 | 北非 | 0 | 0 | 1 | 0.000 | 0.391 | 1 | 0 | 2 | 0.000 | 0.203 | 0.645 | ||
9 | 大洋洲 | 0 | 0 | 1 | 0.000 | 0.341 | 0 | 0 | 1 | 0.000 | 0.204 | 0.307 | ||
10 | 加勒比群岛 | 0 | 0 | 1 | 0.000 | 0.160 | 0 | 0 | 3 | 0.000 | 0.215 | 0.281 | ||
11 | 中部美洲 | 0 | 0 | 0 | 0.000 | 0.000 | 0 | 0 | 0 | 0.000 | 0.000 | 0.000 | ||
11 | 北亚地区 | 0 | 0 | 0 | 0.000 | 0.000 | 0 | 0 | 0 | 0.000 | 0.000 | 0.000 |
[1] |
Nakamoto H, Sugiyama A, Utsumi A. Submarine optical communications system providing global communications network[J]. Fujitsu Scientific and Technical Journal, 2009, 45(4): 386-391.
|
[2] |
Boughton D A, Smith E R O. Regional vulnerability: A conceptual framework[J]. Ecosystem Health, 1999, 5(4): 312-322.
|
[3] |
Adger N, Kelly N. Social vulnerability to climate change and the architecture of entitlements[J]. Mitigation and Adaptation Strategies for Global Change, 1999(4): 253-266.
|
[4] |
田亚平, 常昊. 中国生态脆弱性研究进展的文献计量分析[J]. 地理学报, 2012, 67(11): 1515-1525.
Tian Yaping, Chang Hao. Bibliometric analysis of research progress on ecological vulnerability in China. Acta Geographica Sinica, 2012, 67(11): 1515-1525.
|
[5] |
Cutter S L, Boruff B J, Shirley W L. Social vulnerability to environmental hazards[J]. Social Science Quarterly, 2003, 84(2): 242-261.
|
[6] |
刘毅, 黄建毅, 马丽. 基于DEA模型的我国自然灾害区域脆弱性评价[J]. 地理研究, 2010, 29(7): 1153-1162.
Liu Yi, Huang Jianyi, Ma Li. The assessment of regional vulnerability to natural disasters in China based on DEA model. Geographical Research, 2010, 29(7): 1153-1162.
|
[7] |
Adrianto L, Matsuda Y. Developing economic vulnerability indices of environmental disasters in small island regions[J]. Environmental Impact Assessment Review, 2002, 22(4): 393-414.
|
[8] |
Fang C L, Wang Y, Fang J W. A comprehensive assessment of urban vulnerability and its spatial differentiation in China[J]. Journal of Geographical Sciences, 2016, 26(2): 153-170.
|
[9] |
Watts D, Strogatz S. Collective dynamics of “small-world” networks[J]. Nature, 1998, 393: 440-442.
|
[10] |
Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286: 509-512.
|
[11] |
Albert R, Jeong H, Barabasi A L. Attack and error tolerance in complex networks[J]. Nature, 2000, 406(6794): 387-482.
|
[12] |
Broder A, Kumar R, Raghavan P et al. Graph structure in the web[J]. Computer Networks, 2000, 33(1): 309-320.
|
[13] |
Béla Bollobás, Oliver Riordan. Robustness and vulnerability of scale-free random graphs[J]. Internet Mathematics, 2003, 1(1): 1-35.
|
[14] |
Schintler L A, Gorman S P, Reggiani A et al. Complex network phenomena in telecommunication systems[J]. Networks and Spatial Economics, 2005, 5(4): 351-370.
|
[15] |
Gorman S P, Malecki E J. The networks of the internet: An analysis of provider networks in the USA[J]. Telecommunications Policy, 2005, 26: 113-134.
|
[16] |
Wheeler D, O’ Kelly. Network topology and city accessibility of the commercial Internet[J]. The Professional Geographer, 1999, 51(3): 327-339.
|
[17] |
Grubesic T H, O’ Kelly, Murray A T. A geographic perspective on commercial Internet survivability[J]. Telematics and Informatics, 2003, 20(1): 51-69.
|
[18] |
Rinaldi S M, Peerenboom J P, Kelley T K. Identifying, understanding, and analyzing critical infrastructure interdependencies[J]. IEEE Control Systems Magazine, 2001, 21(6): 11-15.
|
[19] |
Malecki E J. The economic geography of the internet’s infrastructure[J]. Economic Geography, 2002, 78(4): 399-424.
|
[20] |
Barthelemy M. Crossover from scale-free to spatial networks[J]. Europhysics Letters, 2003, 63(6): 915-921.
|
[21] |
Gorman S P, Kulkarni R. Spatial small worlds: new geographic patterns for an information economy[J]. Environment and Planning B, 2004, 31: 273-296.
|
[22] |
Tranos, E. The topology and the emerging urban geographies of the internet backbone and aviation networks in Europe: A comparative study[J]. Environment and Planning A, 2011, 43(2): 378-392.
|
[23] |
Agarwal P K, Efrat A, Ganjugunte S K et al. Network vulnerability to single, multiple, and probabilistic physical attacks[J]. California USA: Milcom 2010 Military Communications Conference, 2010: 1824-1829.
|
[24] |
Neumayer S, Modiano E. Network reliability under random circular cuts[J]. IEEE Global Telecommunications Conference 2011, Houston, Texas, USA, December 2011, pp. 1-6.
|
[25] |
Dawson L M, Ferhat D, Moshe Z et al. Disaster-aware submarine fiber-optic cable deployment for mesh networks[J]. Journal of Lightwave Technology, 2016, 34(18): 4293-4303.
|
[26] |
Cao C, Moshe Z, Wu W et al. Survivable topology design of submarine networks[J]. Journal of Lightwave Technology, 2013, 31(5): 715-730.
|
[27] |
Xie Y S, Wang C J. Vulnerability of submarine cable network of mainland China: Comparison of vulnerability between before and after construction of trans-Arctic cable system[J/OL]. Complexity, vol. 2021, Article ID 6662232, 14 pages, 2021.
|
[28] |
章卓凡, 张维阳, 翟庆华, 等. 全球海底光缆传输网络的节点职能与鲁棒性评价[J/OL]. 世界地理研究, 2021, 1-11.
Zhang Zhuofan, Zhang Weiyang, Zhai Qinghua et al. Assessing node functions and network robustness of the global submarine cable transmission network. World Regional Studies, 2021, 1-11.
|
[29] |
Rodrigue J P. The geography of transport systems-5rd ed[M]. New York: Routledge, 2020.
|
[30] |
Bababeik M, Nasiri M M, Khademi N et al. Vulnerability evaluation of freight railway networks using a heuristic routing and scheduling optimization model[J]. Transportation, 2019, 46(3): 1-31.
|
[31] |
Li T, Rong L. A comprehensive method for the robustness assessment of high-speed rail network with operation data: a case in China[J]. Transportation Research Part A:Policy and Practice, 2020, 132: 666-681.
|
[32] |
Voltes D A, R D H, Suau S P. Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports[J]. Transportation Research Part A Policy and Practice, 2017, 96: 119-145.
|
[33] |
Chen Y, Wang J E, Jin F J. Robustness of China’s air transport network from 1975 to 2017[J]. Physica A:Statistical Mechanics and its Applications, 2020, 539: 1-12.
|
[34] |
王诺, 董玲玲, 吴暖, 等. 蓄意攻击下全球集装箱海运网络脆弱性变化[J]. 地理学报, 2016, 71(2): 293-303.
Wang Nuo, Dong Lingling, Wu Nuan et al. The change of global container shipping network vulnerability under intentional attack. Acta Geographica Sinica, 2016, 71(2): 293-303.
|
[35] |
Guo J K, Wang S B, Wang D D et al. Spatial structural pattern and vulnerability of China-Japan-Korea shipping network[J]. Chinese Geographical Science, 2017, 27(5): 697-708.
|
[36] |
Larranaga M D. Network vulnerability assessment of the U. S. Crude Pipeline Infrastructure[D]. Monterey, California. Naval Postgraduate School, 2012.
|
[37] |
Wang P, Yu B, Sun D et al. Study on topology-based identification of sources of vulnerability for natural gas pipeline networks[J]. Computational Science ICCS 2018. vol 10862.
|
[38] |
王列辉, 叶斐, 郑渊博. 中美集装箱航运网络格局演化与脆弱性评估[J]. 经济地理, 2020, 40(5): 136-144.
Wang Liehui, Ye Fei, Zheng Yuanbo. The assessment of Sino-US container shipping network evolution and vulnerability. Economic Geography, 2020, 40(5): 136-144.
|
[39] |
Xie Y S, Wang C J, Huang J. Structure and evolution of the submarine cable network of Chinese mainland[J]. Journal of Geographical Sciences. 2022, 32(5): 932-956.
|
[40] |
程佳佳, 王成金. 中国石油管道网络的发展演变及空间格局特征[J]. 综合运输, 2019, 41(1): 13-19+30.
Cheng Jiajia, Wang Chengjin. Petroleum pipeline network in China: Development stagea, spatial distribution, and problems. China Transportation review, 2019, 41(1): 13-19+30.
|
[41] |
巴凯斯, 路紫. 从地理空间到地理网络空间的变化趋势——兼论西方学者关于电信对地区影响的研究[J]. 地理学报, 2000, 55(1): 104-110.
Bakis H, Lu Zi. The change from the geographical space to geocyberspace: Review on the western scholars on regional effects by telecommunication. Acta Geographica Sinica, 2000, 55(1): 104-110.
|
[42] |
Jeong H, Tombor B, Albert R et al. The large-scale organization of metabolic networks[J]. Nature, 2000, 407(6804): 651-654.
|
[43] |
吴迪, 王诺, 于安琪, 等. “丝路”海运网络的脆弱性及风险控制研究[J]. 地理学报, 2018, 73(6): 1133-1148.
Wu Di, Wang Nuo, Yu Anqi et al. Vulnerability and risk management in the Maritime Silk Road container shipping network. Acta Geographica Sinica, 2018, 73(6): 1133-1148.
|
/
〈 |
|
〉 |