跨区域重大基础设施与空间治理 (三)

大兴安岭地区多年冻土区不同深度土壤碳分布特征

  • 张紫豪 , 1, 2 ,
  • 王迪 3 ,
  • 吴祥文 1, 2 ,
  • 李天瑞 1, 2 ,
  • 郑智超 1, 2 ,
  • 何俭翔 1, 2 ,
  • 刘立新 1, 2 ,
  • 臧淑英 , 1, 2, *
展开
  • 1.寒区地理环境监测与空间信息服务黑龙江省重点实验室/哈尔滨师范大学,黑龙江 哈尔滨 150025
  • 2.黑龙江省寒区生态安全协同创新中心,黑龙江 哈尔滨 150025
  • 3.应急管理部国家自然灾害防治研究院,北京 100085
臧淑英。E-mail:

张紫豪(1999—),男,黑龙江牡丹江人,硕士研究生,主要从事寒区地表过程与演变研究。E-mail:

收稿日期: 2023-02-08

  修回日期: 2023-05-20

  网络出版日期: 2024-04-08

基金资助

科技基础资源调查专项项目(2022FY100701)

国家自然科学基金联合基金重点项目(U20A2082)

国家自然科学基金项目(41971151)

博士科研启动基金项目资助(XKB202203)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Distribution characteristics of permafrost soil carbon at different depths in the Da Hinggan Ling Prefecture

  • Zhang Zihao , 1, 2 ,
  • Wang Di 3 ,
  • Wu Xiangwen 1, 2 ,
  • Li Tianrui 1, 2 ,
  • Zheng Zhichao 1, 2 ,
  • He Jianxiang 1, 2 ,
  • Liu Lixin 1, 2 ,
  • Zang Shuying , 1, 2, *
Expand
  • 1. Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, Heilongjiang, China
  • 2. Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, Heilongjing, China
  • 3. National Institute of Natural Hazards, Beijing 100085, China

Received date: 2023-02-08

  Revised date: 2023-05-20

  Online published: 2024-04-08

Supported by

Science & Technology Fundamental Resources Investigation Program(2022FY100701)

Science & Technology Fundamental Resources Investigation Program(U20A2082)

National Natural Science Foundation of China(41971151)

Project of Doctoral Research Initiation Fund(XKB202203)

Copyright

Copyright reserved © 2024.

摘要

高纬度多年冻土区是对气候变化响应最敏感的区域,多年冻土退化严重影响土壤碳循环过程,揭示不同地表覆盖类型下多年冻土区土壤有机碳的垂直分布规律,对于预测未来多年冻土区土壤碳库变化有重要意义。本研究以大兴安岭高纬度多年冻土区森林、森林沼泽、灌丛沼泽为研究对象,利用钻探法采集土柱(7~8 m),对3种不同植被下的土壤碳(有机碳、可溶性有机碳)进行测定,进一步分析土壤碳含量的垂直分布特征。结果表明,随着深度增加,土壤碳含量降低,有机碳含量变化范围为14.55~95.98 g/kg(森林沼泽)、17.48~132.93 g/kg(森林)、2.58~396.50 g/kg(灌丛沼泽),但在多年冻土层中也存在较高碳含量的情况;活动层土壤有机碳和可溶性有机碳平均含量均表现为:灌丛沼泽>森林>森林沼泽,多年冻土层土壤有机碳和可溶性有机碳平均含量均表现为在森林沼泽>森林>灌丛沼泽;各组分碳在活动层的变异系数表现为30.31%~114.26%,各组分碳在多年冻土层的变异系数表现为30.23%~192.09%;相关分析表明,土壤碳与深度和pH呈负相关,与土壤水分显著正相关。

本文引用格式

张紫豪 , 王迪 , 吴祥文 , 李天瑞 , 郑智超 , 何俭翔 , 刘立新 , 臧淑英 . 大兴安岭地区多年冻土区不同深度土壤碳分布特征[J]. 地理科学, 2024 , 44(3) : 534 -542 . DOI: 10.13249/j.cnki.sgs.20230076

Abstract

High latitude permafrost regions are the most sensitive areas to climate change. The degradation of permafrost seriously affects the soil carbon cycling process. Revealing the vertical distribution pattern of soil organic carbon in permafrost layers under different land cover types is of great significance for predicting future changes in soil carbon pools in permafrost regions. Here we select forests, forest swamps, and shrub swamps in the high latitude permafrost areas of the Da Hinggan Mountains. Soil columns (7-8 m) were collected using drilling methods to measure soil carbon (organic carbon, soluble organic carbon) under the three different land types, and further analyzed the carbon content at different depths. The results showed that as the depth increased, the soil carbon contents decreased, and the organic carbon content varied from14.55 g/kg to 95.98 g/kg (forest swamp), from 17.48 g/kg to 132.93 g/kg (forest), and from 2.58 g/kg to 396.50 g/kg (shrub swamp). There was also a high carbon content soil layer in permafrost layers. The average content of organic carbon and soluble organic carbon in the active layer soil is as follows: shrub swamp>forest>forest swamp, and the average content of organic carbon and soluble organic carbon in the permafrost layer soil is as follows: forest swamp>forest>shrub swamp. The correlation analysis revealed significant negative correlations between depth and soil organic carbon content, water-soluble organic carbon content, and soil water content in soils under forest and shrub swamp conditions. However, there was no significant correlation between depth and these indices in soils under forest swamp conditions. Additionally, pH values were significantly positively correlated with depth across all soils, while they were negatively correlated with soil organic carbon content, soluble organic carbon content, and soil water content. The coefficient of variation of organic carbon in the active layer is 30.31%-114.26%, and the coefficient of variation of organic carbon in the permafrost layer is 30.23%-192.09%. Correlation analysis showed that soil organic carbon was negatively correlated with depth and pH, and significantly positively correlated with soil moisture.

多年冻土约占北半球陆地表面的22%,是最大的陆地土壤碳库[1-2]。多年冻土含有约1400 ~1 850 Pg的碳储量,几乎等于全球所有非多年冻土土壤中储存的碳储量。在过去几十年里,由于气候变暖,大多数多年冻土地区经历了加速融化,这可能导致多年冻土区土壤碳氮的释放,增加全球大气中温室气体的含量,进而加剧温室效应[3]。多年冻土区大量的有机碳储存在森林和湿地地区[4]。因此,有必要明确多年冻土区森林和湿地土壤碳的含量。
国内外学者对于多年冻土区活动层已进行了大量的研究工作,对于活动层的碳储量有了较好的认识[5]。研究发现活动层土壤碳的垂直分布呈逐渐降低趋势,不同植被类型下也呈逐渐降低的分布特征,但不同植被类型之间表层0~10 cm的土壤碳含量相差较大,这种差别随着深度增加而缩小[6]
多年冻土对气候变暖的响应的表现为土壤温度增加、活动层增大和多年冻土面积减小或消失[7]。多年冻土区土壤碳含量主要受气候、地形、植被、土壤理化性质和深度的影响,气候和植被影响新的土壤有机质输入速率和土壤中的运移过程、微生物对碳的分解降解速率[8]。气候变暖会加速土壤微生物的活动,分解释放土壤有机碳并释放温室气体[9]。土壤有机碳的分解在表层土壤和深层土壤都会发生,在阿拉斯加苔原多年冻土区,多年冻土层中老碳的贡献可占生态系统呼吸的20%[10]。与非多年冻土区不同,多年冻土区长期温度较低,有机质分解缓慢,冻融扰动也会将有机质含量较高的表层土壤带入深层土壤中,因此,多年冻土层中存在一些较高的碳含量[11-12],但是多年冻土区深层土壤碳的含量和分布特征认识还较少,因此有必要明确多年冻土区土壤碳库的垂直分布及其与环境因子的关系,为评估未来冻土碳的释放提供数据。
大兴安岭位于中国东北高纬度多年冻土区,是北方高纬度多年冻土区的南界[13]。森林和湿地是大兴安岭地区主要的地表覆盖类型[14]。目前对于大兴安岭多年冻土区0~1 m活动层土壤已有一些研究基础,但多年冻土层土壤的碳储量和分布特征还需要进一步研究分析[6,11]。本研究以大兴安岭多年冻土区分布最广的森林沼泽、森林和灌丛沼泽为研究对象,分析土壤碳在活动层和多年冻土层分布情况及影响因素,结果可加深学界对多年冻土区深层土壤碳分布及其未来可能的释放的认识。

1 研究区概况

本研究选择北极村和呼中区进行采样(图1)。漠河市北极村(121°07′E~124°20′E,52°10′N~53°33′N),该地区属于寒温带大陆性季风气候,是中国气温最低的县市区。北极村年平均气温在-5℃左右,冬季最冷月可达-50℃[11]。平均气温零度以下达8个月,年平均降水量460.8 mm,平均无霜期86.2 d[16]。呼中区(122°39′E~124°21′E,51°14′N~52°25′N),该区属寒温带大陆性季风气候,光、热、水地域性差异明显,夏季短暂,冬季寒冷而漫长。年均温-4.3℃,最低温度可达-47.5℃,年降水量458.3 mm[17]。其中,北极村2个采样点,分别是森林沼泽Bjc01(北极村1号柱)、森林Bjc02(北极村2号柱),呼中区的采样点为灌丛沼泽Hz03(呼中3号柱)。
图1 采样点位置

多年冻土分布引自于时空三级环境大数据平台[15]

Fig. 1 Location of sampling sites in Northeast China

2 材料与方法

2.1 土壤样品采集与处理

在研究区内钻取3根冻土柱,分别为森林沼泽(Bjc01,深度为755 cm)、森林(Bjc02,深度为742 cm)、灌丛沼泽(Hz03,深度为844 cm),将冻土柱分割成段后按照标准的取样方法装袋贴签,运送至实验室后放于-80℃冷冻冰箱保存。使用前依次放入-50℃;-4℃冰箱进行解冻,解冻后按活动层每10 cm分1层,多年冻土层每20 cm分1层的方法进行处理。各层土样去除植物根系及>2 mm碎石后用以测定相关指标。

2.2 土壤样品测定

含水率(SWC)用烘干法测定;土壤(pH)用玻璃电极法测定;有机碳(SOC)采用Multi N/C3100 TOC仪高温燃烧法测定;可溶性有机碳(DOC)将新鲜土壤用盐溶液进行浸提过滤后,用Multi N/C3100 TOC仪测定。

2.3 计算方法

变异系数的计算公式如下:
$ CV=\dfrac{SD}{MN}\times 100{\text{{\text{%}}}} $
式中,CV代表变异系数;SD代表标准差;MN代表平均值。
CV<10%为弱变异,10%≤CV≤100%为中度变异,100%<CV为强变异[18]
数据分析运用SPSS软件,文中分布图及柱状图运用Origin软件制作。

3 结果

3.1 土壤含水率和pH

图2所示,总体而言不同地表覆盖类型间pH均随着深度增加而增加,Bjc01变化范围5.00~7.11;Bjc02波动频繁范围5.14~6.72;Hz03在活动层和多年冻土层存在大的波动,变化范围5.46~8.40。
图2 大兴安岭地区3个采样点土壤pH和含水量分布

Fig. 2 Soil pH and water content of three soil profiles in the Da Hingan Ling Prefecture

含水量垂直方向上总体呈现降低的趋势,具体表现为:Bjc01森林沼泽土壤含水量变化范围为14.85%~57.73%,Bjc02为森林土壤含水量变化范围为11.50%~38.09%,Hz03灌丛沼泽土壤含水量变化范围为14.14%~80.97%。
图3所示,Bjc01土壤有机碳变化范围为14.55~95.98 g/kg,可溶性有机碳变化范围为0.06~0.27 g/kg;Bjc02土壤有机碳变化范围为17.47~132.92 g/kg,可溶性有机碳变化范围为0.07~0.33 g/kg;Hz03土壤有机碳变化范围为2.57~396.50 g/kg,可溶性有机碳变化范围为0.05~0.10 g/kg。
图3 大兴安岭地区3个采样点的SOC、DOC垂直分布

SOC土壤有机碳; DOC可溶性有机碳;森林沼泽Bjc01、森林Bjc02、灌丛沼泽Hz03

Fig. 3 Vertical distribution of SOC, DOC in three soil profiles in Da Hingan Ling Prefecture

图4所示,通过碳含量在垂直方向上的变异情况可以得出:Bjc01活动层有机碳变异系数为30.53%,可溶性有机碳变异系数为39.37%;多年冻土层有机碳变异系数为65.61%,可溶性有机碳变异系数为33.31%,活动层和多年冻土层的碳含量变化均属于中度变异。Bjc02活动层有机碳变异系数为65.89%,可溶性有机碳变异系数为37.29%;多年冻土层有机碳变异系数32.75%,可溶性有机碳变异系数为30.23%,活动层和多年冻土层的碳含量变化均属于中度变异。Hz03活动层有机碳变异系数为54.20%属于中度变异,可溶性有机碳变异系数为114.26%属于强度变异;多年冻土层有机碳变异系数192.09%属于强度变异,可溶性有机碳变异系数为46.75%属于中度变异。
图4 大兴安岭地区3个采样点的土壤有机碳和可溶性有机碳的平均含量和变异系数

AT活动层;PF多年冻土层;森林沼泽Bjc01、森林Bjc02、灌丛沼泽Hz03

Fig. 4 Soil organic carbon and dissolved organic carbon contents and coefficients of variation for three soil profiles in the Da Hingan Ling Prefecture

3.2 土壤碳与理化因子的相关分析

通过相关分析发现,Bjc01中碳库和含水量与深度呈负相关,但相关性不显著,pH与深度呈(P<0.01)显著正相关;pH与碳库和含水量呈(P<0.01)显著负相关;含水量与可溶性有机碳呈(P<0.01)显著正相关,与有机碳呈(P<0.05)显著正相关;有机碳与可溶性有机碳呈(P<0.01)显著正相关(表1)。
表1 北极村1号柱的相关分析

Table 1 Correlation analysis of Arctic Village Column 1

样本点土壤指标深度有机碳可溶性有机碳含水量
  注:样本量为45; **P<0.01),*P<0.05)。
Bjc01深度1
有机碳-0.2371
可溶性有机碳 -0.109 0.382**1
含水量 -0.254 0.320*0.619**1
pH 0.552**-0.559**-0.475**-0.575**
表2所示,Bjc02中碳库与深度呈(P<0.01)显著负相关,含水量与深度呈(P<0.05)显著负相关,pH与深度呈(P<0.05)显著正相关;pH与有机碳、可溶性有机碳和含水量呈(P<0.01)显著负相关;含水量与可溶性有机碳呈(P<0.01)显著正相关;有机碳与可溶性有机碳呈(P<0.01)显著正相关。
表2 北极村2号柱的相关分析

Table 2 Correlation analysis of Arctic Village Column 2

样本点土壤指标深度有机碳可溶性有机碳含水量
  注:样本量为47; **P<0.01),*P<0.05)。
Bjc02深度1
有机碳 -0.540**1
可溶性有机碳 -0.657**0.830**1
含水量 -0.366*0.724**0.511**1
pH 0.345*-0.643**-0.689**-0.571**
表3所示,Hz03中碳库和含水量与深度呈(P<0.01)显著负相关,pH与深度呈(P<0.01)显著正相关;pH与碳库和含水量呈(P<0.01)显著负相关;含水量与碳库呈(P<0.01)显著正相关;有机碳与可溶性有机碳呈(P<0.01)显著正相关。
表3 呼中3号柱的相关分析

Table 3 Correlation analysis of Huzhong Column 3

样本点土壤指标深度有机碳可溶性有机碳含水量
  注:样本量为46; **P<0.01),*P<0.05)。
Hz03深度1
有机碳 -0.673**1
可溶性有机碳 -0.405**0.625**1
含水量 -0.736**0.917**0.577**1
pH 0.770**-0.641**-0.459**-0.766**

4 讨论

4.1 多年冻土区土壤碳库的分布特征

SOC和DOC含量在3种植被覆盖类型下冻土中呈现出灌丛沼泽>森林>森林沼泽(图3)。原因在于本研究中研究对象所在的白桦林属于阔叶林,树种根的渗出液和凋落物中有更多易于微生物利用的水溶性糖和氨基酸等[19],而落叶松属于针叶林,其中含有很多难以分解的木质素和纤维素等物质[20]。根据图2可知落叶松沼泽比白桦林的土壤含水率高,有机质不容易分解,所以落叶松土壤腐殖质层厚度比白桦林大。森林沼泽表层有较厚腐殖质层,在样品取样时需要剔除该层,所以森林沼泽的土壤有机碳含量较低。灌丛沼泽碳含量最高,是因为灌丛沼泽表层为泥炭土质,泥炭土具有较高含水量、较低pH和较高的有机质含量[21]。刘欣蕊在大兴安岭的研究中也得出了白桦林表层土壤碳含量高于兴安落叶松林的结论[6]。3种植被覆盖类型的SOC和DOC在表层、多年冻土层顶部和部分深层土壤(400~500 cm)处的碳含量较高。本研究与非冻土区土壤碳含量随深度逐渐降低的结果不同,可能的原因是多年冻土区中强烈的冻融扰动引起的,所以土壤碳含量在垂直方向上出现复杂的波动[22-23]。在多年冻土区,有机物质在土壤中向下迁移,由于多年冻土层长时间冻结,所以有机物质在多年冻土层顶部集聚;受冻融扰动的影响,有机质被带入深层土壤[11,21,24]。在青藏高原草甸多年冻土区土壤碳含量的变化范围为2.5%~13.0%,在北阿拉斯加多年冻土区土壤碳含量的变化范围为5 kg/m3~82 kg/m3,均比本研究中大兴安岭多年冻土区的土壤碳含量低[25-26]
在3种植被覆盖类型下SOC和DOC的分布情况存在中度变异和强度变异情况(图4)。潘蕊蕊[27]等人在冻土区的研究中得出碳的分布随着深度的增加从中度变异过渡到强度变异,本研究的活动层能够得出相同结论,原因是土壤碳循环受淋溶作用的影响,向下迁移,在下层土壤中聚集,使一些土层存在较高碳含量,土壤碳含量的变异系数变大。有研究表明土壤达到一定深度后,随深度增加碳库并没有过大的变异情况[28-29]。本研究中多年冻土层存在较强变异,是因为受冻融扰动的影响。

4.2 多年冻土区土壤碳含量与pH和含水率的关系

依据表123可知,3种植被覆盖类型下土壤碳与深度呈负相关,这是因为冻土区森林土壤碳含量主要来源于地上植物和地下根系[28],Gill等人利用同位素示踪证明了由植物贡献的碳含量随深度而降低[30]。土壤碳的来源越来越少,所以随深度的增加碳含量降低。从结果中发现,森林沼泽土壤碳与深度呈(P>0.05)不显著负相关,森林和灌丛沼泽土壤碳含量与深度呈(P<0.01)显著负相关,原因是Bjc01的表层碳含量没有达到很高,且多年冻土层中含有较高碳含量的土层较多,所以碳含量在垂直方向上降低趋势较小,与深度的相关性未达到显著。
依据表123可知,土壤含水量与土壤碳库呈(P<0.01)显著正相关,pH与土壤有机碳呈负相关。活动层含水量较高,pH呈酸性,SOC在活动层含量高,多年冻土层含水量较低,pH酸性减弱,SOC含量降低。研究表明土壤含水量会影响碳的垂直迁移、淋溶过程和有机碳的矿化[31],土壤pH会通过影响微生物活性而影响碳的分解速率[25,32]。冻土退化,含水量降低会导致碳库更容易分解释放,土壤淹水时可促进SOC的溶出和导致团聚体的分散进而增加DOC含量[33-34],并且pH呈酸性时加速DOC的产生[35-36],所以在本研究中活动层DOC含量高。无论是含水量的降低还是pH的升高,均会提高微生物活性[37],本研究中相对于活动层土壤,多年冻土层pH的升高和含水量的降低,具有较高活性的微生物会导致多年冻土层中微生物量升高。同时大兴安岭多年冻土区多年冻土层常年处于低温冻结的情况,会使得碳的分解速率缓慢。因此土壤含水量和pH除了直接影响土壤有机碳含量的分布,还通过影响微生物活性加以间接影响碳动态变化。

5 结论

在大兴安岭多年冻土区土壤垂直方向上,有机碳含量分别在活动层、多年冻土层顶部和多年冻土层出现一些较高碳含量,表明多年冻土层中也存在一些碳含量较高的土。多年冻土区土壤碳库的分布与不同地表覆盖类型和土壤含水率和pH相关。总之,本研究给出了大兴安岭多年冻土区3种地表覆盖类型下深层土壤碳的分布特征,加深了我们对多年冻土中碳库循环的理解。未来的研究还需要进一步探索深层土壤碳库成分,明确其碳库的组分组成及其分布情况,揭示多年冻土土壤碳库稳定性,从而为碳循环的相关研究提供基础数据。
[1]
Obu J, Westermann S, Bartsch A et al. Northern hemisphere permafrost map based on TTOP modelling for 2000—2016 at 1 km2 scale[J]. Earth-Science Reviews, 2019, 193: 299-316.

DOI

[2]
Schuur E A G, Mack M C. Ecological response to permafrost thaw and consequences for local and global ecosystem services[J]. Annual Review of Ecology Evolution and Systematics, 2018, 49(1): 279-301.

DOI

[3]
Tarnocai C, Canadell J G, Schuur E A G et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2019, 23: GB2023

[4]
Mu C C, Abbott B W, Adam J et al. The status and stability of permafrost carbon on the Tibetan Plateau[J]. Earth-Science Reviews, 2020, 211: 3382-3393.

[5]
Ping C L, Michaelson G J, Jorgenson M T et al. High stocks of soil organic carbon in the North American Arctic region[J]. Nature Geoscience, 2008, 1(9): 615-619.

DOI

[6]
刘欣蕊. 大兴安岭多年冻土区森林土壤碳氮垂直分布特征及对水热变化的响应[D]. 哈尔滨: 哈尔滨师范大学, 2021.

Liu Xinrui. Vertical distribution of forest soil carbon and nitrogen and its response to hydrothermal changes in the permafrost region of the Greater Xing’an Mountains. Harbin: Harbin Normal University, 2021.

[7]
Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research:Earth Surface, 2007, 112 F2): F02S03

[8]
Yoshikawa K, Bolton W R, Romanovsky V E et al. Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska[J]. Geophysical Research, 2002, 107(D1): 8148-8161.

[9]
马蔷, 金会军. 气候变暖对多年冻土区土壤有机碳库的影响[J]. 冰川冻土, 2020, 42(1): 91-103.

Ma Qiang, Jin Huijun. Impacts of climate warming on soil organic carbon pools in permafrost regions. Journal of Glaciology and Geocryology, 2020, 42(1): 91-103.

[10]
Schuur E A G, Vogel J G, Crummer K G et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009, 495: 556-559.

[11]
董星丰, 赵光影, 李苗, 等. 大兴安岭北部多年冻土区土壤碳氮含量及有机碳矿化特征[J]. 生态学报, 2021, 41(17): 6728-6737.

Dong Xingfeng, Zhao Guangying, Li Miao et al. Carbon and nitrogen properties and characteristics of soil organic carbon mineralization in permafrost regions in the northern Great Hing’an Mountains. Acta Ecologica Sinica, 2021, 41(17): 6728-6737.

[12]
Mu C C, Zhang T J, Zhang X K et al. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai-Tibet Plateau[J]. European Journal of Soil Science, 2016, 67: 773-781.

DOI

[13]
Biskaborn B K, Smith S L, Noetzli J et al. Permafrost is warming at a global scale[J]. Nature Communications, 2019, 10(1): 264-274.

DOI

[14]
Wang D, Zang S Y, Wu X W et al. Soil organic carbon stabilization in permafrost peatlands[J]. Saudi Journal of Biological Sciences, 2021, 12: 7037-7045.

[15]
周以良, 倪红伟, 周瑞昌. 大兴安岭森林植物多样性特征[J]. 国土与自然资源研究, 1988(3): 66-68.

Zhou Yiliang, Ni Hongwei, Zhou Ruichang. Characteristics of forest plant diversity in the Great Hing’an Mountains. Territory & Natural Resources Study, 1988(3): 66-68.

[16]
Wu X W, Zang S Y, Ma D L et al. Emissions of CO2, CH4 and N2O fluxes from forest soil in permafrost region of Da Hingan Mountains, Northeast China[J]. International Journal of Environmental Research and Public Health, 2019, 16 16): 2999

DOI

[17]
施雅风, 米德生. 中国冰雪冻土图(1∶400万)[M]. 北京: 中国地图出版社, 1988.

Shi Yafeng, Midson. Map of ice, snow, and frozen soil in China (1∶4 million). Beijing: China Map Publishing Press, 1988.

[18]
姚淑霏. 黄土高原小流域侵蚀区和沉积区土壤碳氮分布与矿化特征[D]. 咸阳: 中国科学院教育部水土保持与生态环境研究中心, 2020.

Yao Shufei. Distribution and mineralization of soil carbon and nitrogen in the erosion and deposition sites of small watersheds across China’s Loess Plateau. Xianyang: Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, 2020.

[19]
Outi P, Susan J G, Risto H et al. Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites[J]. Biology and Fertility of Soils, 2001, 33(1): 17-24.

DOI

[20]
Berthrong S T, Schadt C W, Pineiro et al. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands[J]. Applied and Environmental Microbiology, 2009, 75(19): 6240-6248.

DOI

[21]
刘国栋. 三江湿地土壤碳库分布规律研究[D]. 吉林: 吉林大学, 2012.

Liu Guodong. The distribution pattern of soil carbon pool in Sanjiang wetland, northeast of China. Jilin: Jilin University, 2012.

[22]
金浚. 森林沼泽景观异常查证方法技术研究成果报告[R]. 北京: 全国地质资料馆, 2006.

Jin Jun et al. Report on research results of abnormal verification methods and technologies for forest swamp landscape. Beijing: National Geological Data Museum, 2006.

[23]
吴海银, 臧淑英, 王汉席, 等. 冻融作用对兴安型多年冻土区森林腐殖层土壤温室气体通量的影响[J]. 冰川冻土, 2023, 45(2): 763-773.

Wu Haiyin, Zang Shuying, Wang Hanxi et al. Effects of freeze-thaw action on greenhouse gas fluxes in forest humus soil in the Xing’an-type permafrost regions. Journal of Glaciology and Geocryology, 2023, 45(2): 763-773.

[24]
Erin C R, Vanessa L B, Kaizad F P et al. The impact of freeze-thaw history on soil carbon response to experimental freeze-thaw cycles[J]. Journal of Geophysical Research-Biogeosciences, 2022, 127 5): e2022JG006889

DOI

[25]
Mu C C, Zhang T J, Zhang X K et al. Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau[J]. Catena, 2016, 14185-14191.

[26]
Bockheim J G, Hinkel K M. The importance of “deep” organic carbon in permafrost-affected soils of Arctic Alaska[J]. Soil Science Society of America Journal, 2007, 71(6): 1889-1892.

DOI

[27]
潘蕊蕊, 李小雁, 胡广荣, 等. 青海湖流域季节性冻土区坡面土壤有机碳分布特征及其影响因素[J]. 生态学报, 2020, 40(18): 6374-6384.

Pan Ruirui, Li Xiaoyan, Hu Guangrong et al. Characteristics of soil organic carbon distribution and its controlling factors on hillslope in seasonal frozen area of Qinghai Lake Basin. Acta Ecologica Sinica, 2020, 40(18): 6374-6384.

[28]
黄艳章, 信忠保. 不同生态恢复模式对黄土残塬沟壑区深层土壤有机碳的影响[J]. 生态学报, 2020, 40(3): 778-788.

Huang Yanzhang, Xin Zhongbao. Effect of different ecological restoration patterns on soil organic carbon in gullies of Loess Plateau. Acta Ecologica Sinica, 2020, 40(3): 778-788.

[29]
Matthias B S, Gustaf H, Birgit H et al. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta[J]. Catena, 2016, 147: 725-741.

DOI

[30]
Richard G, Ingrid C B, Daniel G. et al.Relationship between root biomass and soil organic matter pools in the shortgrass steppe of eastern colorado[J]. Ecosystems, 1999, 2(3): 226-236.

DOI

[31]
Baumann F, He J, Schmidt K et al. Pedogenesis permafrost and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau[J]. Global Change Biology, 2009, 15(12): 3001-3017.

DOI

[32]
Clark J M, Bottrell S H, Evans C D et al. The importance of the relationship between scale and process in understanding long-term DOC dynamics[J]. Science of the Total Environment, 2010, 408: 2768-2775.

DOI

[33]
Abbott B W, Larouche J R, Jones J B et al. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost[J]. Geophysical Research: Biogeosciences, 2014, 119(10): 2049-2063.

DOI

[34]
Lou Y, Li Z, Zhang T et al. CO2 emissions from sub-tropical arable soils of China[J]. Soil Biology and Biochemistry, 2004, 36(11): 1835-1842.

DOI

[35]
万忠梅, 宋长春, 杨桂生. 三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J]. 环境科学学报, 2009, 29(2): 406-412.

DOI

Wan Zhongmei, Song Changchun, Yang Guisheng. The active soil organic carbon fraction and its relationship with soil enzyme activity in different types of marshes in the Sanjiang Plain. Acta Scientiae Circumstantiae, 2009, 29(2): 406-412.

DOI

[36]
李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4): 544-552.

Li Zhongpei, Zhang Taolin, Chen Biyun. Dynamic of soluble organic carbon and its relation to mineralization of soil organic carbon. Acta Pedologica Sinica, 2004, 41(4): 544-552.

[37]
孙弘哲, 马大龙, 臧淑英, 等. 大兴安岭多年冻土区不同林型土壤微生物群落特征[J]. 冰川冻土, 2018, 40(5): 1028-1036.

Sun Hongzhe, Ma Dalong, Zang Shuying et al. Characteristics of soil microbial community structure under different forest types of permafrost regions in the Greater Khingan Mountains. Journal of Glaciology and Geocryology, 2018, 40(5): 1028-1036.

文章导航

/