大兴安岭地区多年冻土区不同深度土壤碳分布特征
张紫豪(1999—),男,黑龙江牡丹江人,硕士研究生,主要从事寒区地表过程与演变研究。E-mail: zhangzihaohlj@163.com |
收稿日期: 2023-02-08
修回日期: 2023-05-20
网络出版日期: 2024-04-08
基金资助
科技基础资源调查专项项目(2022FY100701)
国家自然科学基金联合基金重点项目(U20A2082)
国家自然科学基金项目(41971151)
博士科研启动基金项目资助(XKB202203)
版权
Distribution characteristics of permafrost soil carbon at different depths in the Da Hinggan Ling Prefecture
Received date: 2023-02-08
Revised date: 2023-05-20
Online published: 2024-04-08
Supported by
Science & Technology Fundamental Resources Investigation Program(2022FY100701)
Science & Technology Fundamental Resources Investigation Program(U20A2082)
National Natural Science Foundation of China(41971151)
Project of Doctoral Research Initiation Fund(XKB202203)
Copyright
高纬度多年冻土区是对气候变化响应最敏感的区域,多年冻土退化严重影响土壤碳循环过程,揭示不同地表覆盖类型下多年冻土区土壤有机碳的垂直分布规律,对于预测未来多年冻土区土壤碳库变化有重要意义。本研究以大兴安岭高纬度多年冻土区森林、森林沼泽、灌丛沼泽为研究对象,利用钻探法采集土柱(7~8 m),对3种不同植被下的土壤碳(有机碳、可溶性有机碳)进行测定,进一步分析土壤碳含量的垂直分布特征。结果表明,随着深度增加,土壤碳含量降低,有机碳含量变化范围为14.55~95.98 g/kg(森林沼泽)、17.48~132.93 g/kg(森林)、2.58~396.50 g/kg(灌丛沼泽),但在多年冻土层中也存在较高碳含量的情况;活动层土壤有机碳和可溶性有机碳平均含量均表现为:灌丛沼泽>森林>森林沼泽,多年冻土层土壤有机碳和可溶性有机碳平均含量均表现为在森林沼泽>森林>灌丛沼泽;各组分碳在活动层的变异系数表现为30.31%~114.26%,各组分碳在多年冻土层的变异系数表现为30.23%~192.09%;相关分析表明,土壤碳与深度和pH呈负相关,与土壤水分显著正相关。
张紫豪 , 王迪 , 吴祥文 , 李天瑞 , 郑智超 , 何俭翔 , 刘立新 , 臧淑英 . 大兴安岭地区多年冻土区不同深度土壤碳分布特征[J]. 地理科学, 2024 , 44(3) : 534 -542 . DOI: 10.13249/j.cnki.sgs.20230076
High latitude permafrost regions are the most sensitive areas to climate change. The degradation of permafrost seriously affects the soil carbon cycling process. Revealing the vertical distribution pattern of soil organic carbon in permafrost layers under different land cover types is of great significance for predicting future changes in soil carbon pools in permafrost regions. Here we select forests, forest swamps, and shrub swamps in the high latitude permafrost areas of the Da Hinggan Mountains. Soil columns (7-8 m) were collected using drilling methods to measure soil carbon (organic carbon, soluble organic carbon) under the three different land types, and further analyzed the carbon content at different depths. The results showed that as the depth increased, the soil carbon contents decreased, and the organic carbon content varied from14.55 g/kg to 95.98 g/kg (forest swamp), from 17.48 g/kg to 132.93 g/kg (forest), and from 2.58 g/kg to 396.50 g/kg (shrub swamp). There was also a high carbon content soil layer in permafrost layers. The average content of organic carbon and soluble organic carbon in the active layer soil is as follows: shrub swamp>forest>forest swamp, and the average content of organic carbon and soluble organic carbon in the permafrost layer soil is as follows: forest swamp>forest>shrub swamp. The correlation analysis revealed significant negative correlations between depth and soil organic carbon content, water-soluble organic carbon content, and soil water content in soils under forest and shrub swamp conditions. However, there was no significant correlation between depth and these indices in soils under forest swamp conditions. Additionally, pH values were significantly positively correlated with depth across all soils, while they were negatively correlated with soil organic carbon content, soluble organic carbon content, and soil water content. The coefficient of variation of organic carbon in the active layer is 30.31%-114.26%, and the coefficient of variation of organic carbon in the permafrost layer is 30.23%-192.09%. Correlation analysis showed that soil organic carbon was negatively correlated with depth and pH, and significantly positively correlated with soil moisture.
Key words: Da Hingan Ling Prefecture; active layer; permafrost; soil carbon; soil moisture
表1 北极村1号柱的相关分析Table 1 Correlation analysis of Arctic Village Column 1 |
样本点 | 土壤指标 | 深度 | 有机碳 | 可溶性有机碳 | 含水量 |
注:样本量为45; **(P<0.01),*(P<0.05)。 | |||||
Bjc01 | 深度 | 1 | |||
有机碳 | -0.237 | 1 | |||
可溶性有机碳 | -0.109 | 0.382** | 1 | ||
含水量 | -0.254 | 0.320* | 0.619** | 1 | |
pH | 0.552** | -0.559** | -0.475** | -0.575** |
表2 北极村2号柱的相关分析Table 2 Correlation analysis of Arctic Village Column 2 |
样本点 | 土壤指标 | 深度 | 有机碳 | 可溶性有机碳 | 含水量 |
注:样本量为47; **(P<0.01),*(P<0.05)。 | |||||
Bjc02 | 深度 | 1 | |||
有机碳 | -0.540** | 1 | |||
可溶性有机碳 | -0.657** | 0.830** | 1 | ||
含水量 | -0.366* | 0.724** | 0.511** | 1 | |
pH | 0.345* | -0.643** | -0.689** | -0.571** |
表3 呼中3号柱的相关分析Table 3 Correlation analysis of Huzhong Column 3 |
样本点 | 土壤指标 | 深度 | 有机碳 | 可溶性有机碳 | 含水量 |
注:样本量为46; **(P<0.01),*(P<0.05)。 | |||||
Hz03 | 深度 | 1 | |||
有机碳 | -0.673** | 1 | |||
可溶性有机碳 | -0.405** | 0.625** | 1 | ||
含水量 | -0.736** | 0.917** | 0.577** | 1 | |
pH | 0.770** | -0.641** | -0.459** | -0.766** |
[1] |
Obu J, Westermann S, Bartsch A et al. Northern hemisphere permafrost map based on TTOP modelling for 2000—2016 at 1 km2 scale[J]. Earth-Science Reviews, 2019, 193: 299-316.
|
[2] |
Schuur E A G, Mack M C. Ecological response to permafrost thaw and consequences for local and global ecosystem services[J]. Annual Review of Ecology Evolution and Systematics, 2018, 49(1): 279-301.
|
[3] |
Tarnocai C, Canadell J G, Schuur E A G et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2019, 23: GB2023
|
[4] |
Mu C C, Abbott B W, Adam J et al. The status and stability of permafrost carbon on the Tibetan Plateau[J]. Earth-Science Reviews, 2020, 211: 3382-3393.
|
[5] |
Ping C L, Michaelson G J, Jorgenson M T et al. High stocks of soil organic carbon in the North American Arctic region[J]. Nature Geoscience, 2008, 1(9): 615-619.
|
[6] |
刘欣蕊. 大兴安岭多年冻土区森林土壤碳氮垂直分布特征及对水热变化的响应[D]. 哈尔滨: 哈尔滨师范大学, 2021.
Liu Xinrui. Vertical distribution of forest soil carbon and nitrogen and its response to hydrothermal changes in the permafrost region of the Greater Xing’an Mountains. Harbin: Harbin Normal University, 2021.
|
[7] |
Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research:Earth Surface, 2007, 112 F2): F02S03
|
[8] |
Yoshikawa K, Bolton W R, Romanovsky V E et al. Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska[J]. Geophysical Research, 2002, 107(D1): 8148-8161.
|
[9] |
马蔷, 金会军. 气候变暖对多年冻土区土壤有机碳库的影响[J]. 冰川冻土, 2020, 42(1): 91-103.
Ma Qiang, Jin Huijun. Impacts of climate warming on soil organic carbon pools in permafrost regions. Journal of Glaciology and Geocryology, 2020, 42(1): 91-103.
|
[10] |
Schuur E A G, Vogel J G, Crummer K G et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009, 495: 556-559.
|
[11] |
董星丰, 赵光影, 李苗, 等. 大兴安岭北部多年冻土区土壤碳氮含量及有机碳矿化特征[J]. 生态学报, 2021, 41(17): 6728-6737.
Dong Xingfeng, Zhao Guangying, Li Miao et al. Carbon and nitrogen properties and characteristics of soil organic carbon mineralization in permafrost regions in the northern Great Hing’an Mountains. Acta Ecologica Sinica, 2021, 41(17): 6728-6737.
|
[12] |
Mu C C, Zhang T J, Zhang X K et al. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai-Tibet Plateau[J]. European Journal of Soil Science, 2016, 67: 773-781.
|
[13] |
Biskaborn B K, Smith S L, Noetzli J et al. Permafrost is warming at a global scale[J]. Nature Communications, 2019, 10(1): 264-274.
|
[14] |
Wang D, Zang S Y, Wu X W et al. Soil organic carbon stabilization in permafrost peatlands[J]. Saudi Journal of Biological Sciences, 2021, 12: 7037-7045.
|
[15] |
周以良, 倪红伟, 周瑞昌. 大兴安岭森林植物多样性特征[J]. 国土与自然资源研究, 1988(3): 66-68.
Zhou Yiliang, Ni Hongwei, Zhou Ruichang. Characteristics of forest plant diversity in the Great Hing’an Mountains. Territory & Natural Resources Study, 1988(3): 66-68.
|
[16] |
Wu X W, Zang S Y, Ma D L et al. Emissions of CO2, CH4 and N2O fluxes from forest soil in permafrost region of Da Hingan Mountains, Northeast China[J]. International Journal of Environmental Research and Public Health, 2019, 16 16): 2999
|
[17] |
施雅风, 米德生. 中国冰雪冻土图(1∶400万)[M]. 北京: 中国地图出版社, 1988.
Shi Yafeng, Midson. Map of ice, snow, and frozen soil in China (1∶4 million). Beijing: China Map Publishing Press, 1988.
|
[18] |
姚淑霏. 黄土高原小流域侵蚀区和沉积区土壤碳氮分布与矿化特征[D]. 咸阳: 中国科学院教育部水土保持与生态环境研究中心, 2020.
Yao Shufei. Distribution and mineralization of soil carbon and nitrogen in the erosion and deposition sites of small watersheds across China’s Loess Plateau. Xianyang: Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, 2020.
|
[19] |
Outi P, Susan J G, Risto H et al. Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites[J]. Biology and Fertility of Soils, 2001, 33(1): 17-24.
|
[20] |
Berthrong S T, Schadt C W, Pineiro et al. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands[J]. Applied and Environmental Microbiology, 2009, 75(19): 6240-6248.
|
[21] |
刘国栋. 三江湿地土壤碳库分布规律研究[D]. 吉林: 吉林大学, 2012.
Liu Guodong. The distribution pattern of soil carbon pool in Sanjiang wetland, northeast of China. Jilin: Jilin University, 2012.
|
[22] |
金浚. 森林沼泽景观异常查证方法技术研究成果报告[R]. 北京: 全国地质资料馆, 2006.
Jin Jun et al. Report on research results of abnormal verification methods and technologies for forest swamp landscape. Beijing: National Geological Data Museum, 2006.
|
[23] |
吴海银, 臧淑英, 王汉席, 等. 冻融作用对兴安型多年冻土区森林腐殖层土壤温室气体通量的影响[J]. 冰川冻土, 2023, 45(2): 763-773.
Wu Haiyin, Zang Shuying, Wang Hanxi et al. Effects of freeze-thaw action on greenhouse gas fluxes in forest humus soil in the Xing’an-type permafrost regions. Journal of Glaciology and Geocryology, 2023, 45(2): 763-773.
|
[24] |
Erin C R, Vanessa L B, Kaizad F P et al. The impact of freeze-thaw history on soil carbon response to experimental freeze-thaw cycles[J]. Journal of Geophysical Research-Biogeosciences, 2022, 127 5): e2022JG006889
|
[25] |
Mu C C, Zhang T J, Zhang X K et al. Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau[J]. Catena, 2016, 14185-14191.
|
[26] |
Bockheim J G, Hinkel K M. The importance of “deep” organic carbon in permafrost-affected soils of Arctic Alaska[J]. Soil Science Society of America Journal, 2007, 71(6): 1889-1892.
|
[27] |
潘蕊蕊, 李小雁, 胡广荣, 等. 青海湖流域季节性冻土区坡面土壤有机碳分布特征及其影响因素[J]. 生态学报, 2020, 40(18): 6374-6384.
Pan Ruirui, Li Xiaoyan, Hu Guangrong et al. Characteristics of soil organic carbon distribution and its controlling factors on hillslope in seasonal frozen area of Qinghai Lake Basin. Acta Ecologica Sinica, 2020, 40(18): 6374-6384.
|
[28] |
黄艳章, 信忠保. 不同生态恢复模式对黄土残塬沟壑区深层土壤有机碳的影响[J]. 生态学报, 2020, 40(3): 778-788.
Huang Yanzhang, Xin Zhongbao. Effect of different ecological restoration patterns on soil organic carbon in gullies of Loess Plateau. Acta Ecologica Sinica, 2020, 40(3): 778-788.
|
[29] |
Matthias B S, Gustaf H, Birgit H et al. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta[J]. Catena, 2016, 147: 725-741.
|
[30] |
Richard G, Ingrid C B, Daniel G. et al.Relationship between root biomass and soil organic matter pools in the shortgrass steppe of eastern colorado[J]. Ecosystems, 1999, 2(3): 226-236.
|
[31] |
Baumann F, He J, Schmidt K et al. Pedogenesis permafrost and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau[J]. Global Change Biology, 2009, 15(12): 3001-3017.
|
[32] |
Clark J M, Bottrell S H, Evans C D et al. The importance of the relationship between scale and process in understanding long-term DOC dynamics[J]. Science of the Total Environment, 2010, 408: 2768-2775.
|
[33] |
Abbott B W, Larouche J R, Jones J B et al. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost[J]. Geophysical Research: Biogeosciences, 2014, 119(10): 2049-2063.
|
[34] |
Lou Y, Li Z, Zhang T et al. CO2 emissions from sub-tropical arable soils of China[J]. Soil Biology and Biochemistry, 2004, 36(11): 1835-1842.
|
[35] |
万忠梅, 宋长春, 杨桂生. 三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J]. 环境科学学报, 2009, 29(2): 406-412.
Wan Zhongmei, Song Changchun, Yang Guisheng. The active soil organic carbon fraction and its relationship with soil enzyme activity in different types of marshes in the Sanjiang Plain. Acta Scientiae Circumstantiae, 2009, 29(2): 406-412.
|
[36] |
李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4): 544-552.
Li Zhongpei, Zhang Taolin, Chen Biyun. Dynamic of soluble organic carbon and its relation to mineralization of soil organic carbon. Acta Pedologica Sinica, 2004, 41(4): 544-552.
|
[37] |
孙弘哲, 马大龙, 臧淑英, 等. 大兴安岭多年冻土区不同林型土壤微生物群落特征[J]. 冰川冻土, 2018, 40(5): 1028-1036.
Sun Hongzhe, Ma Dalong, Zang Shuying et al. Characteristics of soil microbial community structure under different forest types of permafrost regions in the Greater Khingan Mountains. Journal of Glaciology and Geocryology, 2018, 40(5): 1028-1036.
|
/
〈 |
|
〉 |