海南岛双池玛珥湖沉积正构烷烃记录揭示的中世纪暖期气候环境特征
卢毅(1998—),女,福建南平人,硕士研究生,研究方向为环境演变及区域响应。E-mail: 1393386101@qq.com |
收稿日期: 2023-02-10
修回日期: 2023-05-13
网络出版日期: 2024-04-08
基金资助
国家自然科学基金项目资助(42071108)
国家自然科学基金项目资助(41671194)
版权
Climatic and environmental characteristics of the Medieval Warm Period revealed by n-alkane records in the Shuangchi Maar Lake, Hainan Island
Received date: 2023-02-10
Revised date: 2023-05-13
Online published: 2024-04-08
Supported by
National Natural Science Foundation of China(42071108)
National Natural Science Foundation of China(41671194)
Copyright
对采自海南岛双池玛珥湖的沉积岩芯(SCH17-04)进行了加速器质谱法(Accelerator Mass Spectrometry,AMS)14C测年和正构烷烃组成的实验分析,据此探讨了中国热带北缘地区约775—1550年间的气候环境特征。结果表明,SCH17-04岩芯正构烷烃记录揭示了该湖沉积的有机质主要来自于陆生高等植物,也包含部分水生植物和菌藻类植物的输入;利用正构烷烃相关组分的比值发现,在中世纪暖期(Medieval Warm Period,MWP,约950—1350年)时,研究区草本植物比例明显增大,木本植物占比相对偏小,揭示出地处热带北缘的海南岛地区在中世纪暖期气候环境总体上较为偏干,而在黑暗时代冷期(Dark Ages Cold Period,DACP)晚期(约775—950年)和小冰期(Little Ice Age,LIA)早期(约1350—1550年),海南岛地区气候环境相对较为偏湿。区域对比分析发现,双池玛珥湖沉积正构烷烃记录与同处热带地区的雷州半岛湖光岩玛珥湖沉积、西沙群岛东岛湖泊沉积以及来自泰国的石笋记录等较为一致,都揭示了一个气候相对较为偏干的中世纪暖期,这可能跟同一时期热带辐合带(Intertropical Convergence Zone,ITCZ)南北迁移和热带雨带的扩张与收缩、太平洋东西部海区海表温度梯度变化等因素有关。
卢毅 , 薛积彬 , 张永东 , 马欣璐 , 宋德卓 , 钟巍 . 海南岛双池玛珥湖沉积正构烷烃记录揭示的中世纪暖期气候环境特征[J]. 地理科学, 2024 , 44(3) : 543 -552 . DOI: 10.13249/j.cnki.sgs.20220344
With a focus on the Medieval Warm Period (MWP) and the Little Ice Age (LIA), the last millennium is a crucial period in the study of global climate change. In this study, a sediment core (SCH17-04) was collected from Shuangchi Maar Lake, Hainan Island, South China, and its n-alkanes proxies, including the ratios of Tree/Grass, Proportion of aquatic (Paq), Carbon Preference Index (CPI) and Average Chain Length (ACL) were determined. Based on the analysis of Accelerator Mass Spectrometry (AMS) 14C age and n-alkanes, the climatic and environmental characteristics of this region were reconstructed from 775 to 1550. The results showed that the proportion of long-chain n-alkanes was relatively high, while the proportion of medium- and short-chain n-alkanes was relatively low, suggesting that the organic matter inputs to the sediments of Shuangchi Maar Lake over the last millennium were mainly dominated by terrestrial higher plants, with relatively small contributions from aquatic plants and fungi and algae. Based on the above indicators, the environmental changes of Shuangchi Maar Lake over the past millennium can be divided into three stages: 1) In the late Dark Ages Cold Period, the gradual decrease in the Tree/Grass ratio and the significant increase in the ACL value indicated a gradual decrease in woody plants in the study area, indicating that the climatic environment of the study area was drier during this period. 2) In the Medieval Warm Period, low Tree/Grass values and high ACL values indicated an increase in the proportion of herbaceous plants and a relative decrease in the proportion of woody plants in the study area, suggesting a drier climate during this period. 3) In the early Little Ice Age, the increase in Tree/Grass values and decrease in ACL values indicated a gradual increase in the proportion of woody vegetation and a gradual decrease in the proportion of herbaceous vegetation, indicating a wetter climate during this period. In addition, the n-alkane records of Shuangchi Maar Lake were consistent with other climate records revealed by the lacustrine sediments of Huguangyan Maar Lake in the northern Leizhou Peninsula, Dongdao Island in the Xisha Islands, and stalagmite records from Thailand, etc., indicating a relatively dry climate condition during the Medieval Warm Period. Furthermore, it was found that during the Medieval Warm Period (Little Ice Age), the drier (wetter) climatic characteristics of the tropical northern margin could be related to the northward (southward) migration of the Intertropical Convergence Zone, the expansion (contraction) of the tropical rainbands, and the decrease (increase) of the sea surface temperature gradient in the eastern and western Pacific, respectively.
Key words: tropical region; n-alkanes; Medieval Warm Period; Little Ice Age
表1 SCH17-04 孔岩心测年数据Table 1 Radiocarbon dates for SCH17-04 core |
实验室编号 | 样品名称 | 深度/cm | 14C年龄/a B.P. | 误差/a | 校正中值年龄 |
Beta-621782 | SCH17-04-10 | 49 | 260 | 30 | 1528年 |
Beta-496855 | SCH17-04-40 | 91 | 540 | 30 | 1425年 |
Beta-496856 | SCH17-04-65 | 128 | 580 | 30 | 1354年 |
Beta-496857 | SCH17-04-95 | 177 | 690 | 30 | 1274年 |
Beta-496858 | SCH17-04-126 | 230 | 990 | 30 | 1148年 |
Beta-496860 | SCH17-04-182 | 331 | 1100 | 30 | 952年 |
Beta-529985 | SCH17-04-210 | 382 | 1150 | 30 | 847年 |
图6 区域对比与可能的影响因素a.双池玛珥湖Tree/Grass比值;b.湖光岩玛珥湖TOC含量[11];c.西沙群岛东岛DY4岩芯平均粒径[34];d.泰国TK石笋δ18O记录[8];e.西太平洋暖池海表温度(Sea Surface Temperature,SST)[35];f.南方涛动指数(Southern Oscillation Index,SOI)[36];g.热带辐合带南北迁移指数(ITCZ SI)[8];h.热带雨带宽度指数(Tropical Rain Belt Width Index,TRBWI)[37] Fig. 6 Regional comparison and possible influencing factors |
[1] |
Lamb H H. The early medieval warm epoch and its sequel[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1965, 1: 13-37.
|
[2] |
Liu J B, Chen F H, Chen J H et al. Humid medieval warm period recorded by magnetic characteristics of sediments from Gonghai Lake, Shanxi, North China[J]. Chinese Science Bulletin, 2011, 56(23): 2464-2474.
|
[3] |
杨周, 林振山. 北半球过去2000年气温变化的多尺度分析[J]. 地理科学, 2010, 30(2): 295-299.
Yang Zhou, Lin Zhenshan. Multi-scale analysis of northern hemisphere temperature changes over past two millennia. Scientia Geographica Sinica, 2010, 30(2): 295-299.
|
[4] |
高建慧, 刘健, 王苏民. 中国中世纪暖期气候研究综述[J]. 地理科学, 2006, 26(3): 376-383.
Gao Jianhui, Liu Jian, Wang Sumin. Overview on studies of Medieval Warm Period in China. Scientia Geographica Sinica, 2006, 26(3): 376-383.
|
[5] |
Li T, Li J, Zhang D D. Yellow River flooding during the past two millennia from historical documents[J]. Progress in Physical Geography: Earth and Environment, 2020, 44(5): 661-678.
|
[6] |
杨保, 康兴成, 施雅风. 近2000年都兰树轮10年尺度的气候变化及其与中国其它地区温度代用资料的比较[J]. 地理科学, 2000, 20(5): 397-402.
Yang Bao, Kang Xingcheng, Shi Yafeng. Decadal climatic variations indicated by Dulan Tree-Ring and the comparison with temperature proxy data from other regions of China during the last 2000 years. Scientia Geographica Sinica, 2000, 20(5): 397-402.
|
[7] |
Li J, Dodson J, Yan H et al. Quantifying climatic variability in monsoonal northern China over the last 2200 years and its role in driving Chinese dynastic changes[J]. Quaternary Science Reviews, 2017, 159: 35-46.
|
[8] |
Tan L, Shen C C, Löwemark L et al. Rainfall variations in central Indo-Pacific over the past 2700 y[J]. Proceedings of the National Academy of Sciences, 2019, 116(35): 17201-17206.
|
[9] |
Kiage L M. A 1200-year history of environmental changes in Bay Jimmy area, coastal Louisiana, USA[J]. The Holocene, 2020, 30(2): 201-209.
|
[10] |
Sánchez-López G, Hernández A, Pla-Rabès S et al. Climate reconstruction for the last two millennia in central Iberia: The role of East Atlantic (EA), North Atlantic Oscillation (NAO) and their interplay over the Iberian Peninsula[J]. Quaternary Science Reviews, 2016, 149: 135-150.
|
[11] |
Chu G, Liu J, Sun Q et al. The ‘Mediaeval Warm Period’ drought recorded in Lake Huguangyan, tropical South China[J]. Holocene, 2002, 12(5): 511-516.
|
[12] |
Wasson R J, Bayliss P. 4 River flow and climate in the ‘Top End’of Australia for the last 1000 years, and the Asian-Australian monsoon[C]// Kakadu National Park Landscape Symposia Series 2007–2009 Symposium 4: Climate change, 6–7 August 2008, Gagudju Crocodile Holiday Inn, Kakadu National Park. 2008, 6: 15.
|
[13] |
Salzer M W, Kipfmueller K F. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau, USA[J]. Climatic Change, 2005, 70(3): 465-487.
|
[14] |
郑卓, 王建华, 王斌, 等. 海南岛双池玛珥湖全新世高分辨率环境纪录[J]. 科学通报, 2003, 48(3): 282-286.
Zheng Zhuo, Wang Jianhua, Wang Bin et al. High-resolution records of Holocene from the Shuangchi Maar lake in Hainan Island. Chinese Science Bulletin, 2003, 48(3): 282-286.
|
[15] |
Zhang W, Yan H, Liu C et al. Hydrological changes in Shuangchi Lake, Hainan Island, tropical China, during the Little Ice Age[J]. Quaternary International, 2018, 487: 54-60.
|
[16] |
Dodson J, Li J, Lu F et al. A Late Pleistocene and Holocene vegetation and environmental record from Shuangchi Maar, Hainan Province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 523: 89-96.
|
[17] |
汤文坤, 王永, 董进, 等. 海南北部近2000年气候环境变化——来自双池玛珥湖高分辨率沉积记录[J]. 西北地质, 2017, 50(1): 291-300.
Tang Wenkun, Wang Yong, Dong Jin et al. High resolution paleoenvironmental evolution revealed by a Lacustrine sediment sequence in Shuangchi Maar Lake during past 2000 years in north Hainan Island. Northwestern Geology, 2017, 50(1): 291-300.
|
[18] |
陈树培. 海南岛的植被概要[J]. 生态科学, 1982, 1(1): 29-37.
Chen Shupei. Overview of the vegetation of Hainan Island. Ecological Science, 1982, 1(1): 29-37.
|
[19] |
Zhang Y, Yu J, Su Y et al. A comparison of n-alkane contents in sediments of five lakes from contrasting environments[J]. Organic Geochemistry, 2020, 139: 103943
|
[20] |
Ficken K J, Li B, Swain D L et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7-8): 745-749.
|
[21] |
Li C, Ma S, Xia Y et al. Assessment of the relationship between ACL/CPI values of long chain n-alkanes and climate for the application of paleoclimate over the Tibetan Plateau[J]. Quaternary International, 2020, 544: 76-87.
|
[22] |
Jeng W L. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments[J]. Marine Chemistry, 2006, 102(3-4): 242-251.
|
[23] |
Feurdean A, Grindean R, Florescu G et al. The transformation of the forest steppe in the lower Danube Plain of south-eastern Europe: 6000 years of vegetation and land use dynamic[J]. Biogeosciences, 2021, 18: 1081-1103.
|
[24] |
王自翔, 王永莉, 吴保祥, 等. 泸沽湖沉积物正构烷烃分布特征及其古植被意义[J]. 海洋地质与第四纪地质, 2015, 35(2): 169-177.
Wang Zixiang, Wang Yongli, Wu Baoxiang et al. Distribution of n-alkanes in the Luguhu lake sediments and their paleovegetation significance. Marine Geology & Quaternary Geology, 2015, 35(2): 169-177.
|
[25] |
Reimer P J, Austin W E N, Bard E et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0—55 cal kBP)[J]. Radiocarbon, 2020, 62(4): 725-757.
|
[26] |
刘嘉丽, 刘强, 伍婧, 等. 大兴安岭四方山天池全新世以来沉积物正构烷烃分布、单体碳同位素特征及古环境意义[J]. 湖泊科学, 2017, 29(2): 498-511.
Liu Jiali, Liu Qiang, Wu Jing et al. N-alkanes distributions and compound-specific carbon isotope records and their paleoenviromental significance of sediments from Lake Sifangshan in the Great Khingan Mountain, Northeastern China[J]. Journal of Lake Sciences, 2017, 29(2): 498-511.
|
[27] |
Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34(2): 261-289.
|
[28] |
Zhang Z, Zhao M, Eglinton G et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr[J]. Quaternary Science Reviews, 2006, 25(5-6): 575-594.
|
[29] |
Seki O, Meyers P A, Kawamura K et al. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in Northeast China during the last 16 kyr[J]. Organic Geochemistry, 2009, 40(6): 671-677.
|
[30] |
Duan Y, Ma L. Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinghai-Tibet Plateau, China)[J]. Organic Geochemistry, 2001, 32(12): 1429-1442.
|
[31] |
Xie S, Guo J, Huang J et al. Restricted utility of δ13C of bulk organic matter as a record of paleovegetation in some loess–paleosol sequences in the Chinese Loess Plateau[J]. Quaternary Research, 2004, 62(1): 86-93.
|
[32] |
Bai Y, Fang X, Nie J et al. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(1-2): 161-169.
|
[33] |
Luo P, Peng P A, Lü H Y et al. Latitudinal variations of CPI values of long-chain n-alkanes in surface soils: Evidence for CPI as a proxy of aridity[J]. Science China Earth Sciences, 2012, 55(7): 1134-1146.
|
[34] |
Yan H, Sun L, Oppo D W et al. South China Sea hydrological changes and Pacific Walker Circulation variations over the last millennium[J]. Nature Communications, 2011, 2(1): 1-5.
|
[35] |
Oppo D W, Rosenthal Y, Linsley B K. 2 000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool[J]. Nature, 2009, 460(7259): 1113-1116.
|
[36] |
Yan H, Sun L, Wang Y et al. A record of the Southern Oscillation Index for the past 2 000 years from precipitation proxies[J]. Nature Geoscience, 2011, 4(9): 611-614.
|
[37] |
Denniston R F, Ummenhofer C C, Wanamaker A D et al. Expansion and contraction of the Indo-Pacific tropical rain belt over the last three millennia[J]. Scientific Reports, 2016, 6,34485
|
[38] |
Ding R, Li J, Tseng Y et al. Influence of the North Pacific Victoria mode on the Pacific ITCZ summer precipitation[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(3): 964-979.
|
[39] |
Yancheva G, Nowaczyk N R, Mingram J et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445: 74-77.
|
[40] |
Zhang P, Cheng H, Edwards R L et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record[J]. Science, 2008, 322: 940-942.
|
[41] |
Li X, Yang H, Yao Y et al. Precipitation changes recorded in the sedimentary total organic carbon isotopes from Lake Poyang in the Middle and Lower Yangtze River, southern China over the last 1600 years[J]. Quaternary International, 2016, 425: 292-300.
|
[42] |
Denniston R F, Wyrwoll K H, Polyak V J et al. A stalagmite record of Holocene Indonesian——Australian summer monsoon variability from the Australian tropics[J]. Quaternary Science Reviews, 2013, 78: 155-168.
|
[43] |
Yan H, Wei W, Soon W et al. Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age[J]. Nature Geoscience, 2015, 8(4): 315-320.
|
[44] |
Xie S P, Hu K, Hafner J et al. Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño[J]. Journal of Climate, 2009, 22(3): 730-747.
|
[45] |
Xu H, Lan J, Sheng E et al. Hydroclimatic contrasts over Asian monsoon areas and linkages to tropical Pacific SSTs[J]. Scientific Reports, 2016, 6, 33177.
|
[46] |
孙立广, 晏宏, 王玉宏. 南海西沙过去千年降雨变化及其影响因素[J]. 科学通报, 2012, 57(19): 1730-1738.
Sun Liguang, Yan Hong, Wang Yuhong. South China Sea hydrological changes over the past millennium. Chinese Science Bulletin, 2012, 57(19): 1730-1738.
|
/
〈 |
|
〉 |