Scientia Geographica Sinica  2015 , 35 (12): 1591-1598

Orginal Article

地貌学的基本范式及其在教学科研中的作用

高红山1, 潘保田1, 李炳元2, 李琼1

1.兰州大学西部环境教育部重点实验室,甘肃 兰州 730000
2.中国科学院地理科学与资源研究所,北京 100101

Paradigms in Geomorphology and Its Value in Education and Research

GAO Hong-shan1, PAN Bao-tian1, LI Bing-yuan2, LI Qiong1

1.Key Laboratory of Western China's Environmental Systems, Ministry of Education, Lanzhou University, Lanzhou,Gansu 730000, China
2. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

中图分类号:  K90-0

文献标识码:  A

文章编号:  1000-0690(2015)12-1591-08

收稿日期: 2014-12-20

修回日期:  2015-03-16

网络出版日期:  2015-01-20

版权声明:  2015 《地理科学》编辑部 本文是开放获取期刊文献,在以下情况下可以自由使用:学术研究、学术交流、科研教学等,但不允许用于商业目的.

基金资助:  国家自然科学基金面上项目(41071007)、国家重点基础研究发展计划资助(2011CB403301)和国家自然科学基金重大研究计划-重点支持项目(91125008)资助

作者简介:

作者简介:高红山(1977-),男,山东汶上人,副教授,主要从事地貌演化与第四纪环境研究。E-mail:gaohsh@lzu.edu.cn

展开

摘要

自吉尔伯特和戴维斯的时代开始,地貌学的研究即已遵从理论优先的观察背负模式。从以描述为主的侵蚀循环学说、强调定量分析的地表过程、水力几何学到目前系统地貌学的研究,此中充盈着大量的范式、原理和基本概念,它们是地貌学作为一门科学存在和发展的理论基础。在课堂教学与课程发展层面上,从地貌学史的角度注重对基本范式的归纳和讲授,是培养与激发学生学习兴趣和专业素养的主要途径。通过对经典文献的研读,学生可以从中直接学习到详尽地描述和思辨方法,同时还会意识到对地貌学思想的传承和理论的接受应该批判地进行。在学科建设和科学研究方面,基于范式研究是利用共同的学术语言融入国际地貌学界的前提,凝练学科整体关心的科学问题,开展有组织持续有效的基础理论研究,是复兴国内地貌学的最佳途径。

关键词: 范式 ; 地貌发生学 ; 地貌描述学 ; 过程地貌学 ; 系统地貌学

Abstract

At least since the time of Gilbert and Davis, geomorphologists have pursued and employed theory-laden observational techniques. From the Davisian geographical cycle which is basically descriptive, the quantitative-dynamic approach to landform studies and hydraulic geometry, to the systematic geomorphology today, there are full of paradigms, principles and basic concepts. Full recognition and understanding of these paradigms are essential for developing a unified approach to the science of geomorphology. Summarizing paradigms from teaching geomorphological history in the curriculum is also important. It helps to maintain and stimulate student’s interest in professional education. Reading original literatures could help students to learn more qualitative description and critical methodological detail. As a result, students would realize how to accept the ideas and theories of geomorphology critically. To the discipline development and scientific research in geomorphology, paradigm means a common scientific “language”, by which introducing it into our domestic study is a prerequisite for access to the international geomorphological community. Summary of fundamental research questions and continuous study to those basic theoretical researches is the best way to make a renaissance of modern geomorphology in China.

Keywords: paradigm ; Geomorphogeny ; Geomorphography ; process geomorphology ; systematic geomorphology

0

PDF (430KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

高红山, 潘保田, 李炳元, 李琼. 地貌学的基本范式及其在教学科研中的作用[J]. , 2015, 35(12): 1591-1598 https://doi.org/

GAO Hong-shan, PAN Bao-tian, LI Bing-yuan, LI Qiong. Paradigms in Geomorphology and Its Value in Education and Research[J]. Scientia Geographica Sinica, 2015, 35(12): 1591-1598 https://doi.org/

地貌学最好也最简单的定义就是对地表形态进行研究的科学[1]。目前它的研究对象已不局限于地球气下环境的地形,还包括海底地形,甚至囊括了行星地貌学[2]。其关注的主要问题是:如何对地貌进行详尽的描述?它们是如何形成的,随时间是怎样变化的?其主导造貌营力是什么以及是如何起作用的?进而延伸出2个研究方向:地貌描述学(Geomorphography)和地貌发生学(Geomorphogeny)[3]

作为一门科学,地貌学必然不能仅满足于对地貌的描述或对其演化历史的重建,而应该充盈着大量的理论[4],或者说我们不能从其研究对象中获取学科存在的逻辑和基础。这些理论,我们即理解成范式(Paradigm):不同的范式不具有可比性,范式的转变,主要是一种信仰或信念的转变,具有非理性的特征;旧范式经过科学革命到新范式的过渡不具有连续性;科学共同体通常不会因为有一两个反例而轻易放弃原有的范式,因而科学理论不仅不会像逻辑经验主义所期望的那样被证实,也不会像波普尔所设想的那样一有反例便被证伪[5],它们恰恰是地貌学存在和发展的基础。

现代地貌学的开端一般以1877年出版的《地文学》和《亨利山的地质报告》为标志[6],在Davis的推动下迅速发展成一门介于地质学和地理学的交叉学科,百余年来大致经历了地貌演化、地表过程到复杂的地貌系统等理论为主的诸多阶段,可谓理论丰盈,研究队伍强大,专业的地貌学组织众多。而反观命运多舛的国内地貌学,以部门地貌学为主,分支学科和研究方向愈来愈细,部分之和远远大于整体,对地貌学的整体理论和基础理论研究极少,教材匮乏,且不能汲取学科研究的前沿成果对内容进行充实,在基础理论方面主要盛行戴维斯学说,对初学者而言或以为此学派即是所有地貌学家的思想,有些教材抑或直接略过基本理论的介绍,以地貌描述学或部门地貌学为主。这无疑会造成中国地貌学学科地位的进一步弱化和后继人才的缺失。为此,我们对地貌学的基本理论、范式和概念进行了梳理,认为它们既是课堂教学的基本内容,也是从事科学研究的理论源泉,以提请学界同仁加以重视,即为复兴国内地貌学而努力。

1 William Morris Davis 的侵蚀循环学说

Davis认为地貌研究主要目的是对地表形态进行有效的描述,且解释性的描述比纯粹的经验式描述要好。他曾广泛旅行过各大洲,对地貌的发生和发展深入研究,认为所有地表形态的变化都是构造、过程和时间的函数[7],进而创立了地貌学的第一个范式即地理循环,又被称为侵蚀循环或常态循环等[3]。根据Davis的思想[7~9],某一地区平坦的原始地表,经过快速的地壳运动而被抬升,到一定高度后抬升停止。其后构造稳定,河流地貌开始将按幼年期、壮年期和老年期的模式依次发育,最终在终极阶段形成准平原;如果仅局部小范围地域若被侵蚀至近于基准面时,被称为部分准平原。如果地壳再次抬升即地貌回春,河流下切会形成新的侵蚀阶段。

在对地貌发育阶段进行划分时,Davis[7~9]发展了地貌学的一个基本概念即均夷[10],认为河流的均夷是指侵蚀循环中壮年期河流的侵蚀和堆积作用达到平衡,并一直持续到老年期。这一概念包含两层意思:其一,自然河道存在着一个发展和保持相对稳定地形的趋势,它代表着侵蚀和堆积之间的大概平衡;其二,河流从初始抬升的地表开始下切发育到均夷阶段将消耗地貌演化的幼年期。后来Kesseli[11]曾建议废除均夷这一概念,理由是自然河流的流量、流速和其它相关因子随时随地变化,河流的能量和泥沙量在任何时空域上都不可能存在着平衡。Mackin[12]认为这是从工程学的短尺度视角看问题,而地质学家应着眼于长时空尺度的地貌过程。Knox[13]则是认为我们可以用河道纵剖面和/或横断面特征是否正在发生着快速地形变化来判别河流是否处于均夷状态。显然,Davis的第一点经受住了时间的考验,第二点是错误的。

由于融合了当时生命演化的思想,加之简单明了的定性描述方法,大大促成了侵蚀循环学说被广泛接受[3]。面对地表景观时,学生们不仅要问它(如山地)以前是什么样子的?是什么强度的侵蚀营力作用其上以及可观察的结果是什么?现在它处于什么侵蚀阶段?但其后,该学说又大受批判,如Leighly[14]认为“Davis最大的错误在于他假定我们知道地形发展演化的过程,其实我们不知道”。Russell[15]的批评则更为严厉:“戴维斯地貌学把学生完全带离了真正的科学研究。”显然,这些批评有失公允。以河流地貌为例,我们可以利用目前地貌学的理论和技术来证明地貌系统是演化的[16]实验室的物理模拟和计算机数值模拟;加速控制条件下真实地貌的变化;普莱费尔法则及其它理论推导;河流系统潜能的逐步耗散;遍历定律;年代学研究等。

另外,Davis虽然侧身于地理学,但他本身是地质学者,他的思想体系主要建立在地史观上。由于地质学不像物理学和生物学那样具有独立的哲学基础,作为一门现实主义的科学,地质学显然具有解释性和历史性[17],有一种认识是地质学为地球知识的集合,或者说地质学是认识地球的一种思考方法,Gilbert、Chamberlin、Davis等人就主要强调后者[18]。所以,即便是今天我们要理解侵蚀循环学说或者说对地貌的形成演化历史进行研究,也必然要具备一些基本的地质学知识,即用以解释地表景观的基础概念,Thornbury[19]曾将其归纳为10条:作用于当今地表的自然过程和法则贯通整个地质时代,但其强度可变;地质构造是地貌发育演化的主导因素,这点可以在地形中表现出来;在很大程度上地表形态的差异是由不同作用速率的地表过程造就的;地表过程会在其地貌形态中保存着明显的痕迹,每一种地表过程会形成独有的地貌组合特征;不同的侵蚀造貌营力可以形成一连串具有其特殊标志的地貌;地貌演化的复杂性较单纯性更为常见;地球表面的地貌年龄极少老于第三纪,且大多不老于更新世;如果不充分考虑更新世地质构造和气候变化对地表的影响,那么就很难对当今地貌景观作出恰当的解释;全球气候对不同地表过程的影响是不同的;虽然地貌学主要关注当前的地貌景观,但它最大的用处在于历史的延伸,只有充分认识到这点的重要性,并使地质学家也相信地貌学具有解释地史的作用,地貌学的原理和知识才能在地质学的实质应用上变成真正而有用的工具。

2 Walther Penck的地形分析即地壳活动原理

与Davis的研究目标不同,Penck[20]希望以地形研究为工具,寻求对地壳变动历史作出更为有效的解释。另外,侵蚀循环理论中构造抬升和地表夷平是交替发生的,这显然与多数地表景观抬升和侵蚀作用同时发生的事实不符。在Penck的地壳活动原理中,构造过程和剥蚀连续渐进的相互关系导致了不同的景观演化模式,其中坡地的演化决定着整体地表景观的演化,但其模式中也由3个时期即上升发育期、平衡发育期和下降发育期构成。根据彭克的观点,坡地主要是地壳抬升形成的。在抬升发育期,河谷下切加深但未加宽,因而发育成凸坡;平衡发育期,岸坡平直;至下降发育期又形成凹坡。任何谷边坡地在下降发育期,都具有两个基本部位即上部陡峭的重力坡和下方平缓的冲刷坡,两者之间存在明显的转折,角度大小由流经其上的水量和水中挟带泥沙颗粒的大小决定。一般而言,干旱区的冲刷坡比湿润地区要陡。Penck认为地块抬升初期较为缓慢,甚至小于地表的侵蚀速率,以至于形成平坦毫无起伏的平原即初始准平原(Primärrumpf)。此后可能是上升发育期、平衡上升期或下降发育期,若是加速抬升,则地块迅速高出海平面,但其顶部仍保持平面状态。德国黑林山地的侧翼分布着连续的层状台地,Penck认为这些地貌面是一个扩展的穹窿,正值上升发育期,因而是连续上升的结果,其山顶面即为初始准平原。在岩性均一的地区,由于地层加速上升,即可形成不连续的侵蚀面,这些面先有老年期(初始准平原),再成壮年,而后才发展成幼年。地表的加速侵蚀沿河道形成裂点,如果裂点成为局地基准面,在每个裂点之上,坡地随之发育演化逐渐形成一个侵蚀面,并向扩大了的穹窿母体伸展,进而形成一系列的山前梯地。另外,与Davis的坡地蚀低说不同,Penck认为坡地的演化以置换为主[21]

由于Penck英年早逝,其遗著行文委婉晦涩,即便德国学者也难解其意,致使他的思想在德国也没有得到广泛认可[22],其理论复苏主要出现在1953年地形分析的英译本[20]出版之后。其间伯克利学派起了重要的推动作用,他们的学生主要基于对德文原始文献的分析,加之大量的野外考察以验证戴维斯和彭克地貌学方法的优劣性;Sauer[23]更是认为地貌学的研究要以描述和分类为主,地貌发生学应当被取代,地貌解释的工作留给坐办公室的地质学者(Armchair geologist)完成。另外,南非学者King [24]也尽了最大努力,但20世纪后半叶随着研究兴趣的转移,这种长/大尺度地貌学理论已不再是学界研究的核心。

不论我们接受或者反对Penck的初始准平原概念和其对地壳抬升形式的分类,他在地貌学理论上的独树一帜,迫使地貌学家重新考虑一些理论的基本假定,促进了学术研究的发展。另外,虽然Penck曾经批评Davis的理论过于偏颇,认为侵蚀循环所必需的地壳稳定期极难存在,是特殊情形而非一般常态,但他并没有完全否定Davis理论的真实性和学术价值。

3 Arthur N. Strahler和John T. Hack 的动力地貌学

虽然地貌学的系统研究根植于力学和流体动力学[10, 25,26],但是鉴于Davis缺乏对地表过程的真实关注[27],相关工作被地貌学家所忽视。直到20世纪中期顺应计量革命的社会发展潮流,地貌学开始出现从定性到定量的转变[28,29]。Strahler[30]正是从Horton的遗著[29]中看到了一个工程学家从水力学的角度对河流地貌过程进行的毕生努力和研究,进而开始从传统定性到注重于过程定量研究的转变,即其积极倡导的动力地貌学,后来又被称为定量地貌学或过程地貌学。Strahler[30,31]认为地貌学应该把研究重点放在工程学家关注的侵蚀和动力系统之中,地貌过程是一个趋向于稳定态和具有自我调节的开放系统,此中重力和分子剪切力作用于地表物质从而造成了风化、侵蚀、传输和堆积等地貌特征,动力学方法的终极目标是利用数学模型,结合理性推导和经验分析对可观察数据及其相关的能量、物质和时间进行研究。数量,其实是种符号,我们用以代表抽象事实,可能使之具体化;用以代表思想,可以使之简化。以数理作为研究方法,在思考上可有严格轨迹可循的思想路线,从而避免了漫无边际的猜想。而时间是区分历史地貌学和动力地貌学的标志,前者总是关注于“发生了什么”,后者更关心“发生着什么”。另外,就系统而言,时间只在开始时重要,一旦有了平衡,时间就不再是关键问题。

Hack[32,33]进一步发展了吉尔伯特有关动力均衡的思想[13],认为一定时段内构造抬升增加的物质可以被持续的地表过程带走而地表形态不变,即地貌可以达到稳定态。在一个侵蚀景观中,动力均衡维系着所有坡地(山坡和河岸边坡)之间相互调整,河流和坡面都是均夷的,作用于分水岭和河道底部的过程虽然不同,但以同样的速率侵蚀着地表,地形和过程是平衡的稳定态,不随时间发生变化。另外,Hack[34]还复活了一个地貌学的基本原理即普莱费尔法则,从而扩展了定量研究地貌演化的途径。

Strahler和Hack原是戴维斯学派的弟子,他们并没有完全否定侵蚀循环理论,只是随着对计量研究的重视,长尺度地貌演化理论逐渐被边缘化了。当然,这种范式转变的企图面临着重重阻力,如戴维斯的忠实拥趸英国地貌学界的权威Wooldridge[35]极其武断地认为地貌学的基础即是对地形的解释,而非过程研究,后者应该留给自然地质学。好在由于Strahler的坚持及其对后继人才的培养[36],动力地貌学俨然成为20世纪后半叶地貌学研究的重心。当然此中统计学方法大行其道[37,38],而非Strahler开始倡导的热动力学原则,以至于日本学者Yatsu[39]极其嘲讽地评论:“Strahler吆喝的是酒,卖的是醋。”另外,自然地理学之中的动力均衡(Dynamic Equilibrium)与稳定态(Steady State)是同义词,即系统近乎平衡但变化极其缓慢,所以Huggett[40]建议应该用均夷(Grade)取代动力均衡一词。时至今日,面对板块构造、气候变化和地表过程及其速率(或为作用过程,及其变化频率和幅度)风起云涌的研究,地貌学的现实依然是地貌演化理论尚处于真空之中:我们知晓戴维斯地貌学的不足,但又不能完成抛弃,因为尚缺乏一个基于过程研究用以解释地貌演化的统一理论[41]。近年来水力地貌学家努力构建的地貌传输法则[42,43]或许可以为此提供可能。

4 Luna B. Leopold 的水力几何学

在寻求定量研究的同时,Leopold领导下的河流地貌学逐渐成为学界研究的热点,进而成就了一段地貌学研究的黄金时代(20世纪50年代、70年代)。Leopold等[44,45]发现在一定时段内河道横断面的几何形态(宽度、深度和过水面积)与水流参数(流速、水面坡度、水流阻力和含沙量)随流量变化,进而创立水力几何学或河流动态理论(Regime Theory),以研究或描述上述7个因子作为自变量与流量之间的关系。就给定断面而言,河道宽度的变化不如流量的变化快,而向下游方向,河床宽度变化较快,且与流量的平方根成正比;深度随流量增加而增加,且向下游方向快速增加;流速亦随流量增加而增加,但向下游方向几乎是恒定的或略微增大;含沙量增加的变速要远远大于其它因子,但向下游方向悬移质变化不大;河道的糙度随流量增加有所降低,向下游方向亦是如此;水面坡度是恒定的,但向下游方向快速减小。而具有一致性或者可预测水力几何特征的、稳定的冲积河流被认为是均衡的或者动态的。

在定量研究方面,水力几何学建立了流域内河道参数之间的物理联系。但这种方法存在的问题是[46]:由于建立在纯粹的统计之上,这种关系并不能解释其物理过程,或者说统计上的真实不等于必然;其二,由于受区域或局地地貌因子的影响,这种函数方法不具有普遍性;另外,地貌学家时常关心于特例而非常态。显然,这是利用地貌学的基本研究方法—类比[47],在对河流地貌学进行定量的描述[48],其重心不在于解释。而就短期地貌过程的预测方面,此类工作起着十分重要的作用。

5 J Harlen Bretz的斯波坎洪水与新灾变论

早在20世纪20年代,Bretz[49,50]把华盛顿州中东部哥伦比亚高原和哥伦比亚盆地的一片荒原命名为槽化劣地,认为它们是更新世期间灾害性的斯波坎洪水冲蚀的结果,进而形成了网状河槽、大瀑布、黄土岛、基岩盆地、广泛砾石堆积和巨型砾质沙波等景观。这种惊世骇俗的假定显然威胁和激怒了当时均变论一统天下的地质学界,其争论持续到20世纪60年代,最终以一纸电文“现在我们都是灾变论者”而暂告平息[51]。从地貌学的角度,这种高幅低频的造貌事件在塑造地表景观时可能远比低幅高频的地表过程更为有效,即为新灾变论[52]

其实,地质学的均变论概念本身就具有两重性[53]:一个为本质上的均变论(Substantive Uniformitarianism),假定速率和物质条件不变的地质演化理论;一个为方法上的均变论(Methodological Uniformitarianism),主张自然法则时空变化的一套原则。前者是错误的,应该被抛弃;后者也有点多余。或者说我们现在应该知道,均变论并不要求地质过程的速率和强度是恒定的,而地表过程的幅度和频率是变化的,自然界的物理、化学法则是不变的且不可被侵犯[54]。另外,任何地貌过程与其存在的时空尺度有关,其变化过程的幅度和频率问题显然是地貌学研究的核心议题。

6 Richard J. Chorley和Stanley A. Schumm 的系统地貌学

20世纪后半叶地貌学从演化到过程、从过程到系统的范式转变过程,Strahler的学生Chorley和Schumm起到了推波助澜的作用。Chorley [55]认为由于地表系统是一个开放系统,地貌学的研究目的和方法就不应局限于戴维斯学派的演化历史,而应该寻求地表形态和过程之间的可能联系,对地貌现象的多元特征进行研究。无疑,他非常成功地促进了研究的变革,但是我们很难估价Chorley的工作对地貌学所带来变化的尺度和范围[56],以至于Yatsu[39]的评价也有点偏颇:“现在看来Chorley并不像一位地貌学家,而是这场启蒙运动的拥护者”。Chorley参与出版的四卷地貌学史[57~60]实为学界之瑰宝。

相对而言,Schumm对地貌学的贡献则较为具体,他博士毕业后进入美国地质调查局,在Leopold领导下对河流地貌进行研究,进而提出了冲积河道的形态与沉积物类型有关[61]、河流形变[62]、地貌临界和复杂响应[63]等创新性理论和概念。转入科罗拉多州立大学之后,Schumm创建了用以地表过程模拟的实验室,进而扩展了研究方向。另外,他对地貌学学科属性和研究方法的探究已成为科学哲学的简易读本[47]。在调和历史学派和过程学派的争论方面, Schumm的贡献也功不可没[64],他们界定了流域的地貌因子是时空尺度的函数,并基于过程研究对侵蚀循环理论进行了修定[65]。最终促成了地貌学系统理论的完整性,现在我们应该把地貌系统作为一个非线性的复杂系统,从不同的时空尺度对其演化历史和地表过程进行综合研究。

此外,他们曾批评从事第四纪尺度的地貌学家在解释气候变化与地貌过程之间联系的时候缺少令人信服的理论基础,只是采用一些相当宽泛包含着临界、反馈、复杂响应、幕次活动等概念的范式[66]。其间兴起的全球变化科学,通过对大气过程变化的幅度和频率及其成因机制的大量研究[67],已经可以为评估地表过程复杂的动力学系统提供部分理论支撑。

7 基本范式在课堂教学和科学研究中的作用

上述范式为地貌学的发展和成熟提供了重要的思想源泉和研究规范。虽然在20世纪90年代初,Yatsu[39]曾批评地貌学界的权威主义、英雄主义和偶像崇拜严重阻碍着科学研究。但是,或许正是由于过度强调多元性,造成了地貌学缺乏公认的中心概念,也毫不关注(实际)问题[68],地貌学其实正陷入一场前所未有的生存危机[69]。我们依然要直面诸多悬而未决的问题,譬如地貌学得以存在的科学属性[70];另外和自然地理学类似[71],目前分支学科和研究方向的专一化使部分之和远远大于整体,如何构建统一性的地貌学理论无疑是个难题。当然,如果乐观地看,目前地貌学正深受下列发展趋势的影响[72]对复杂非线性动力过程的兴趣增加;测量技术飞速发展;有关过程的信息和计算能力增大;加强了与工程学和生命科学等其它学科的联系;对哲学问题的兴趣增加;注重人地关系研究;重新重视地质尺度的地貌演化。

由于受历史、政治、人文等诸多因素的影响,国内地貌学以部门研究为主[73],针对地貌学整体理论的研究极其薄弱,各分支学科渐渐独立和分离,主干衰弱;另外受社会人才供需关系的影响,后继队伍萎缩。为此,我们迫切希望国内地貌学界加强合作,而从基本范式入手,是和谐处理和协调不同分支和主干之间的关系,保持地貌学整体繁荣的最佳途径。

在课堂教学层面上,注重对基本范式的归纳和讲授,在信息网络化和全球化的今天,获取原始文献可谓垂手可得,带领学生重温经典,从历史长河中汲取知识,因为过去不仅是现代的钥匙,还可以开启未来之门[74,75];在教学内容上,应同时强调历史地貌学之中的夷平面、剥蚀年代学,以及过程地貌学之中的地貌系统、时空尺度、物质与能量、均衡、地表过程的幅度和频率、临界、复杂响应、反馈等基本概念;另外,注入科学方法论的讲授,我们不应仅仅留恋于基础理论和教材的拿来主义,满足于已知的已知,而淡漠于未知的未知,科学的属性要求我们必须努力去证明哪些是已知和哪些是未知,这样才能教研相长,对后继人才的培养和学科发展将大有裨益。

另外,从上述范式的发展和演进可以看出,任何一个科学范式都有一个生命周期,在理论的道路上,还会继续看到潮起潮落,人来人往[74,75]。目前地貌学的研究深度和广度已空前提高,原有的基本理论已十分落后,我们虽知地貌学正面临着重大变革,但我们尚不知它是什么?何时发生?以怎样的方式进行?对此,或许只有2种选择:忙于投机或积极应对[76]。如果能在今后地貌学的基本理论和范式建设方面有所贡献,就应该在科学研究层面上,注重对基本范式的解读,凝练学科的科学问题,寻求原创性的科学发现,进而提出新的概念、方法、理论和技术。当然如果缺乏国家层面重大经费的支持,就难以进行持续的、有效的、有目标的基础理论研究,所以最后借用地貌学家Smith[69]当年对学界的呼吁以作结:“我们没有方向,因为我们没有合作;我们没有合作,因为我们没有组织…我们如何作为一个团体与其它学科进行合作,进而得到尊重…如果我们放低姿态,将会成功;如果我们目光高远,将会幸存乃至于繁荣”。

The authors have declared that no competing interests exist.


参考文献

[1] Ritter D F,Kochel R C,Miller J R.

Process Geomorphology 5th

[M].New York:McGraw Hill,2011.

[本文引用: 1]     

[2] Baker V R.

Extraterrestrial geomorphology:Science and philosophy of Earthlike planetary landscapes

[J].Geomorphology,1993,7(1-3):9-35.

https://doi.org/10.1016/0169-555X(93)90010-Y      URL      [本文引用: 1]      摘要

Not Available
[3] Higgins C G.

Theories of landscape development: a perspective

[C]//Melhorn W N,Flemal R C.Theories of landform development.Boston,MA:Allen and Unwin,1975,1-28.

[本文引用: 3]     

[4] Rhoads B L,Thorn C E.

Geomorphology as science:the role of theory

[J].Geomorphology,1993,6(4):287-307.

https://doi.org/10.1016/0169-555X(93)90052-4      URL      [本文引用: 1]      摘要

ABSTRACT Because geomorphology is a science, it is permeated by theory. Overt recognition of this actuality is frequently resisted by geomorphologists. Earth history does not represent an alternative to earth science, it is an essential component of earth science. In its broadest sense science seeks to discover new knowledge through a two-stage activity involving the creation and justification of ideas (theory). Deduction is generally regarded as the only logically-consistent method of justifying ideas. The creation of ideas is a much more controversial topic. Some methodologists deem it beyond logic; certainly deductive arguments, which are nothing more than formal, logical expressions of theory, play no role in the conception of new ideas. Many earth scientists generate possible explanations of observed phenomena based on abductive reasoning. Others advocate reliance on purported forms of “pure” induction, such as serendipity and intuition, in which observations assume primacy over theory. Besides lacking consistency and educability, the latter posture is flawed because it mistakenly implies that becoming well-versed in theory is irrelevant to or impedes scientific discovery. Irrational or subjective factors play a role in the creation of ideas, but it is erroneous to claim that these factors are divorced from theory. Science is first and foremost a cognitive activity; thus, the primacy of observations in science is a myth. All observations are theory-laden in the sense that the act of observation inherently involves interpretation and classification, both of which can only occur within the context of theoretical preconceptions. Even discoveries based on unexpected observations require the fortunate investigator to recognize the theoretical importance of what is seen or measured.The most useful view of geomorphology as a science is one in which theory is seen as central, but fragile, and in which theory and observation are viewed symbiotically with theory providing the generative force and observation providing a vital policing role. Much of the current debate in geomorphology centers around differences in characteristics of theory, type of scientific arguments, and metaphysical perspectives among investigators working at different temporal scales. Full recognition and understanding of these differences are essential for developing a unified approach to the science of geomorphology.
[5] Kuhn T S.The Structure of Scientific Revolutions[M].Chicago:University of Chicago Press,1962.

[本文引用: 1]     

[6] Gregory K J.

The Changing Nature of Physical Geography

[M].London:Arnold,2000.

[本文引用: 1]     

[7] Davis W M.

The geographical cycle

[J].Geographical Journal,1899,14(5):481-504.

https://doi.org/10.2307/1774538      URL      [本文引用: 3]      摘要

All the varied forms of the lands are dependent on—or, as the mathematician would say, are functions of—three variable quantities, which may be called structure, process, and time. In the beginning, w
[8] Davis W M.

Baselevel, grade and peneplain

[J].Journal of Geology,1902,10(1):77-111.

https://doi.org/10.1086/620982      URL      摘要

Not Available
[9] Davis W M, Wood J W Jr.

The geographic development of northern New Jersey

[C]//Proceedings of the Boston Society of Natural History,1890,24:365-423.

[本文引用: 2]     

[10] Gilbert G K.

Report on the geology of the Henry Mountains:Geographical and Geological Survey of the Rocky Mountain Region (U.S.)

[M]. Washington:Washington Government Printing Office,1877.

[本文引用: 2]     

[11] Kesseli J E.

The concept of graded river

[J].The Journal of Geology,1941,49(6):561-588.

URL      [本文引用: 1]     

[12] Mackin J H.

Concept of the graded river

[J].Geological Society of America Bulletin,1948,59(5):463-511.

URL      [本文引用: 1]     

[13] Knox J C.

Concept of the graded stream

[C]//Melhorn W N, Flemal R C.Theories of landform development.Boston,MA:Allen and Unwin,1975,169-198.

[本文引用: 2]     

[14] Leighly J B.

Walter Penck's contribution to geomorphology,comments by J. Leighly

[J].Annals of the Association of American Geographers,1940,30(4):223-232.

[本文引用: 1]     

[15] Russell R J.

Preface in Rock Control in Geomorphology of Yatsu E

[M].Tokyo:Sozosha,1966.

[本文引用: 1]     

[16] Bloom A L.

Geomorphology:a systematic analysis of late Cenozoic landforms 3rd

[M]. New Jersey:Prentice Hall,1997.

[本文引用: 1]     

[17] Frodeman R.

Geological reasoning:Geology as an interpretive and historical science

[J].Geological Society of America Bulletin,1995,107(8):960-968.

https://doi.org/10.1130/0016-7606(1995)107<0960:GRGAAI>2.3.CO;2      URL      [本文引用: 1]      摘要

CiteSeerX - Scientific documents that cite the following paper: Geological Reasoning: geology as an interpretive and historical science
[18] Baker V R.

Geosemiosis

[J].Geological Society of America Bulletin,1999,111(5):633-646.

https://doi.org/10.1130/0016-7606(1999)111<0633:G>2.3.CO;2      URL      [本文引用: 1]      摘要

Discusses the philosophy of semiotics as a means of describing the highly productive reasoning processes of geologists. Interpretation of Earth's signs via all manners of measurement, quantitative modeling, and experimentation; Viewing of signs as vital entities; Semiotic grammar providing the means to describe the representational character of signification.
[19] Thornbury W D.

Principles of Geomorphology

[M].New York:Wiley,1954.

[本文引用: 1]     

[20] Penck W.

Morphological Analysis of Landforms

[M].London:Macmillan,1953.

[本文引用: 2]     

(Penck W.

Die morphologische Analyse

.Engelhorns,Stuttgart,1924,translated by H. Czeck and K.C. Boswell)

[本文引用: 2]     

[21] Tuan Y F.

The misleading antithesis of Penckian and Davisian concepts of slope retreat in waning development

[J].Proceedings of the Indiana Academy of Science,1957,67:212-214.

URL      [本文引用: 1]     

[22] Bremer H.Albrecht Penck (

1858-1945) and Walter Penck (1888-1923):two German geomorphologists

[J].Zeitschrift für Geomorphologie,1983,127(2):129-138.

[本文引用: 1]     

[23] Sauer C O.

The morphology of landscape

[J].University of California Publications in Geography,1925,2(2):19-54.

URL      [本文引用: 1]     

[24] King L C.

Canons of landscape evolution

[J].Bulletin of the Geological Society of America, 1953,64(7):721-752.

URL      [本文引用: 1]     

[25] Gilbert G K.

The transportation of débris by running water

[M].United States Geological Survey Professional Paper,1914.

[本文引用: 1]     

[26] Gilbert G K.

Hydraulic-mining débris in the Sierra Nevada

[M].United States Geological Survey Professional Paper,1917.

[本文引用: 1]     

[27] Strahler A N.

Equilibrium theory of erosional slopes approached by frequency distribution analysis

[J].American Journal of Science,1950,248(11):673-696.

URL      [本文引用: 1]     

[28] Bagnold R A.

The Physics of blown Sand and Desert Dunes

[M].London:Methuen,1941.

[本文引用: 1]     

[29] Horton R E.

Erosional development of streams and their drainage basins:hydrophysical approach to quantitative morphology

[J].Geological Society of America Bulletin,1945,56(3):275-370.

URL      [本文引用: 2]     

[30] Strahler A N.

Quantitative-dynamic geomorphology at Columbia 1945-1960:A retrospective

[J].Progress Physical Geography,1992,16(1):65-84.

https://doi.org/10.1177/030913339201600102      URL      [本文引用: 2]      摘要

No abstract available.
[31] Strahler A N.

Dynamic basis of geomorphology

[J].Geological Society of America Bulletin,1952,63(9): 923-938.

https://doi.org/10.1130/0016-7606(1952)63[923:DBOG]2.0.CO;2      URL      [本文引用: 1]      摘要

Not Available
[32] Hack J T.

Interpretation of erosional topography in humid temperate regions

[J].American Journal of Science,1960,258-A:80-97.

URL      [本文引用: 1]     

[33] Hack J T.

Dynamic equilibrium and landscape evolution

[C]//Melhorn W N,Flemal R C.Theories of landform development.Boston,MA:Allen and Unwin,1975,87-102.

[本文引用: 1]     

[34] Hack J.

Studies of longitudinal stream profiles in Virginia and Maryland

[M].United States Geological Survey Professional Paper,1957.

[本文引用: 1]     

[35] Wooldridge S W.

The trend of geomorphology

[J].Transactions of the Institute of British Geographers,1958,25(1):29-35.

https://doi.org/10.1111/j.0033-0124.1958.106_43.x      URL      [本文引用: 1]      摘要

Two aqueous suspensions, one containing crystals of uniform size and the other containing colloidal particles, were made with each of seven solid contact poisons (two DDT-analogues, DDT, rotenone, 2-bromomercurithiophen, dieldrin and endrin). The relative toxicity of each pair of suspensions was found in dipping or measured-drop tests on as many as possible of the species Oryzaephilus surinamennsis L., Tribolium castaneum Herbst and Tenebrio molitor L. In addition, some tests were made by injection of colloidal suspensions. In each test, insects were kept after treatment at two temperatures: 28 degrees C. and 11, 17 or 20 degrees C.; counts of kill were made after 24 hr. The tests measured three different kinds of temperature coefficient of insecticidal action. In the contact tests, the colloid was nearly always more toxic than the crystals. In all the tests, except those with dieldrin, the relative toxicity (colloid : crystals) was greater at the lower after-treatment temperature, i.e. the temperature coeficient of the relative toxicity was negative. But in the case of dieldrin, the coefficient was positive. The DDT-analogues, DDT, rotenone and endrin were more toxic at the lower after-treatment temperature, i.e. they had negative temperature coefficients of kill by contact action. In all these cases the temperature coefficient of kill by contact action was greater for colloid than for crystals. Dieldrin and 2-bromomercurithiophen had positive temperature coefficients of kill by contact action. With dieldrin, the temperature coefficient was greater for colloid than for crystals; but with 2-bromomercurithiophen, the reverse was true. The temperature coeficient of kill by injection was negative for DDT, but positive for dieldrin and endrin; the other poisons were not tested by injection. A possible explanation for the results of the contact tests is given in an Appendix. The explanation is based on a number of assumptions about the penetration of insect cuticle by solid poisons. These assumptions lead to the conclusion that the effect of temperature on the relative toxicity depends on the temperature coefficient of kill by internal action of the poison on the insect. This can be measured by injection tests. If it is negative or zero, the ratio of toxicities (colloid: crystals) by contact action, measured quite soon after treatment of the insects, will be greater at a low temperature after treatment than at a high temperature after treatment; but if the coefficient is positive, the effect of temperature on relative toxicity cannot be foretold. The experimental results seem to confirm the assumptions.
[36] Kennedy B A.Inventing the Earth:Ideas on Landscape Development since 1740[M].Malden,Oxford,Carlton:Blackwell Publishing,2006.

[本文引用: 1]     

[37] Strahler A N.

Statistical analysis in geomorphic research

[J].Journal of Geology,1954,62(1):1-25.

https://doi.org/10.1086/626131      URL      [本文引用: 1]      摘要

Not Available
[38] Chorley R J.The application of statistical methods to geomorphology[C]//Dury G H.Essays in Geomorphology.New York:American Elsevier Publishing Company Inc.,1966,275-387.

[本文引用: 1]     

[39] Yatsu E.

To make geomorphology more scientific

[J].Transactions, Japanese Geomorphological Union,1992,13(2):87-124.

URL      [本文引用: 3]      摘要

To Make Geomorphology More Scientific YATSU Eiju Transactions, Japanese Geomorphological Union 13(2), 87-124, 1992-04-25
[41] Ritter D F.

Landscape analysis and the search for geomorphic unity

[J].Geological Society of America Bulletin,1988,100(2):160-171.

https://doi.org/10.1130/0016-7606(1988)100<0160:LAATSF>2.3.CO;2      URL      [本文引用: 1]      摘要

Not Available
[42] Dietrich W E,Bellugi D,Heimsath A M,et al.

Geomorphic Transport laws for predicting landscape form and dynamics

[C]//Wilcock P,Iverson R. Prediction in Geomorphology.American Geophysical Union monograph No.135,Washington D C,2003,103-132.

[本文引用: 1]     

[43] Dietrich W E,Perron J T.

The search for a topographic signature of life

[J].Nature,2006,439(7075):411-418.

https://doi.org/10.1038/nature04452      URL      PMID: 16437104      [本文引用: 1]      摘要

Landscapes are shaped by the uplift, deformation and breakdown of bedrock and the erosion, transport and deposition of sediment. Life is important in all of these processes. Over short timescales, the impact of life is quite apparent: rock weathering, soil formation and erosion, slope stability and river dynamics are directly influenced by biotic processes that mediate chemical reactions, dilate soil, disrupt the ground surface and add strength with a weave of roots. Over geologic time, biotic effects are less obvious but equally important: biota affect climate, and climatic conditions dictate the mechanisms and rates of erosion that control topographic evolution. Apart from the obvious influence of humans, does the resulting landscape bear an unmistakable stamp of life? The influence of life on topography is a topic that has remained largely unexplored. Erosion laws that explicitly include biotic effects are needed to explore how intrinsically small-scale biotic processes can influence the form of entire landscapes, and to determine whether these processes create a distinctive topography.
[44] Leopold L B.

Downstream Change of Velocity in Rivers

[J].American Journal of Science,1953,251(8):606-624.

https://doi.org/10.2475/ajs.251.8.606      URL      [本文引用: 1]     

[45] Leopold L B,Maddock T Jr.

The Hydraulic Geometry of Stream Channels and Some Physiographic Implications

[M].United States Geological Survey Professional Paper,1953.

[本文引用: 1]     

[46] Holden J.

An Introduction to Physical Geography and the Environment

[M]. Harlow:Pearson/Prentice Hall,2008.

[本文引用: 1]     

[47] Schumm S A.To Interpret the Earth:Ten Ways to be Wrong[M].New York:Cambridge University Press,1991.

[本文引用: 2]     

[48] Leopold L B.

River Morphology as an Analog to Darwin's Theory of Natural Selection

[J].American Philosophical Society Proceedings,1994,138(1):31-47.

URL      [本文引用: 1]      摘要

iver channels exhibit a remarkable similarity, regardless of size. There is a neat progression of shapes and dimensions from the smallest rill to the Mississippi or the Amazon. There are, of course, differences among rivers in various climates and geological settings, but such differences seem overshadowed by similarities. For example, meander curves (see Figure 1)-the beautiful bends and loops of rivers seen most clearly from an airplane-appear similar in shape because there is a nearly constant ratio of wave length to channel width. The consistency of these relationships can be seen by the remarkable correlations shown in Figure 2. The plotted data represent individual locations on a wide variety of streams, rivers, and flumes where the radius, wave length and width could be measured on maps, photographs, or in the field. Comparable consistencies among different rivers exist in their hydraulic geometries, exemplified by the relations of water discharge to mean values of width, depth, and velocity. Had these characteristics been widely recognized in the last century, they probably would have been used as arguments for the teleology widely accepted in biology at that time. The concept held 鈥漷hat everything in nature and its processes leads to a... predetermined goal,... and that the world was driven by some intrinsic force or directly by the hand of God which would lead it to ever-greater... perfection鈥欌 (Mayr, 1991, pp. 125-29). Indeed, the nearly perfect geometry seen in some river forms evokes a wonder comparable to that we experience in observing components of the biologic world. It has been difficult for scientists in the fields of geography, geomorphology, and hydraulics to assimilate into a coherent philosophy the several aspects of river channels that evade explanation by simple determinism:
[49] Bretz J H.

The Channeled Scabland of the Columbia Plateau

[J].Journal of Geology,1923,31(8):617-649.

https://doi.org/10.1086/623053      URL      [本文引用: 1]      摘要

Scitation is the online home of leading journals and conference proceedings from AIP Publishing and AIP Member Societies
[50] Bretz J H.

Channeled Scabland and the Spokane Flood

[J].Journal of the Washington Academy of Science Journal,1927,17(8):200-211.

[本文引用: 1]     

[51] Ager D.

The Nature of the Stratigraphical Record

[M].New York:John Wiley&Sons,1993.

[本文引用: 1]     

[52] Dury G H.

Neocatastrophism?A further look

[J].Progress in Physical Geography,1980,4(3):391-413.

https://doi.org/10.1177/030913338000400303      URL      [本文引用: 1]      摘要

This paper takes further an inquiry (Dury, 1975) into the prospects of a powerful growth of neocatastrophism, whether under the actual name or not. Coined for the purposes of palaeontology, the term has already escaped into geoscience in general. The concept of
[53] Gould S J.

Is uniformitarianism necessary

[J]?American Journal of Science,1965,263(3):223-228.

URL      [本文引用: 1]     

[54] Monroe J S,Wicander R.

The Changing Earth:Exploring Geology and Evolution

[M].Belmont:Brooks/Cole,2009.

[本文引用: 1]     

[55] Chorley R J.Geomorphology and general systems theory[C]//United States Geological Survey Professional Paper,1962,

500-

B:1-9.

[本文引用: 1]     

[56] Stoddart D R.

Richard J Chorley and modern geomorphology

[C]//Stoddart D R.Process and form in geomorphology,London:Routledge,1997,383-399.

[本文引用: 1]     

[57] Chorley R J,Dunn A J,Beckinsale R P.

The History of the Study of Landforms or the Development of Geomorphology,Volume1:Geomorphology before Davis

[M].London:Methuen,1964.

[本文引用: 1]     

[58] Chorley R J,Beckinsale R P,Dunn A J.

The History of the Study of Landforms or the Development of Geomorphology,Volume2:The Life and Work of William Morris Davis

[M].London:Methuen,1973.

[59] Beckinsale R P,Chorley R J.

The History of the Study of Landforms or the Development of Geomorphology,Volume3:Historical and Regional Geomorphology,1890-1950

[M].London:Routledge,1991.

[60] Burt T P,Chorley R J,Brunsden D,et al.

The History of the Study of Landforms or The Development of Geomorphology, Volume4:Quaternary and Recent Processes and Forms (1890-1965) and the Mid-Century Revolutions

[M].London:Geological Society,2008.

[本文引用: 1]     

[61] Schumm S A.

The shape of alluvial channels in relation to sediment type

[C]//United States Geological Survey Professional Paper,1960,352-B:17-30.

[本文引用: 1]     

[62] Schumm S A.

River metamorphosis

[C]//Proceedings of American Society of Civil Engineers,Journal of Hydraulics Division,1969,95:255-273.

[本文引用: 1]     

[63] Schumm S A.

Geomorphic thresholds and complex response of drainage systems

[C]//Morisawa M.Fluvial Geomorphology,New York:S.U.N.Y.Binghamton,1973,299-310.

[本文引用: 1]     

[64] Schumm S A,Lichty R W.

Time, space and causality in geomorphology

[J].American Journal of Science,1965,263(2):110-119.

URL      [本文引用: 1]     

[65] Schumm S A.

Episodic erosion:A modification of the geomorphic cycle

[C]//MelhornW N,Flemal R C.Theories of landform development.Boston,MA:Allen and Unwin,1975,69-86.

[本文引用: 1]     

[66] Chorley R J,Schumm S A,Sugden D E.

Geomorphology

[M].London:Methuen,1984.

[本文引用: 1]     

[67] Barry R G,Chorley R J.

Atmosphere,Weather and Climate 9th

[M].London:Routledge,2010.

[本文引用: 1]     

[68] Slaymaker O.

A pluralist, problem-focused geomorphology

[C]//Stoddart D R.Process and Form in Geomorphology.London:Roudedge,1997,328-39.

[本文引用: 1]     

[69] Smith D G.

Fluvial Geomorphology:Where Do We Go from Here

[J]?Geomorphology,1993,7(1-3):251-262.

https://doi.org/10.1016/0169-555X(93)90019-X      URL      [本文引用: 2]      摘要

This article is not about how wonderful the future will be. Its aim is to awaken fluvial geomorphologists from complacency so that they can take action and prepare for tough competitive times ahead. In the following paragraphs I outline some of my deep concerns about the future of our field and suggest some survival remedies.
[70] Rhoads B L,Thorn C E.

The Scientific Nature of Geomorphology

[M].Chichester:John Wiley and Sons Ltd,1996.

[本文引用: 1]     

[71] Clifford N J.

The future of Geography:when the whole is less than the sum of its part

[J].Geoforum,2002,33(4):431-436.

https://doi.org/10.1016/S0016-7185(02)00043-X      URL      [本文引用: 1]      摘要

In a recent article, Thrift has presented an optimistic account of the future of Geography. While this reply is broadly supportive of his claims that Geography is more diverse, and has more to offer than ever before, it is less optimistic with respect to the prospects for the survival of Geography as a unitary academic discipline. Experiences over the last 20 years in the UK higher education, in particular, the 2001 RAE exercise, point to an unfavourable institutional climate for the discipline. Within Geography, the ever-increasing diversity of its subject matter and research philosophy poses problems for disciplinary identity. This is reflected in the more restricted perspective of the subject outside the universities, and is compounded by a weakening of the link between Geography in the universities and the schools. In these circumstances, serious attention must be given to the changing nature of the discipline, to its positioning with respect to other subjects, and to its relations with the wider world. At a time of academic, cultural, technological and social dynamism, there are, nevertheless, opportunities as well as dangers for the subject. Although this reply is an explicitly bleak one regarding the future, the implicit message is that Geography can (and should) still prosper. The more positive outcome, however, rests on an appreciation and nurturing of a more traditional geographical heritage than Thrift identifies, as well as a more creative view of the relationship between fundamental and applied research.
[72] Rhoads B L, Thorn C E.

The role and character of theory in geomorphology

[C]//Gregory K J,Goudie A.The SAGE Handbook of Geomorphology.London:SAGE,2011,59-77.

[本文引用: 1]     

[73] 许炯心,李炳元,杨小平,.

中国地貌与第四纪研究的近今进展与未来展望

[J].地理学报,2009,64(11):1375~1393.

https://doi.org/10.11821/xb200911009      URL      Magsci      [本文引用: 1]      摘要

近年来,在来自国民经济建设巨大需求的推动下,我国地貌与第四纪学服务于国民经济建设,取得了长足的进展。本文对近年来(主要为2006-2008年间)我国在地貌与第四纪方面所取得的主要进展进行了综述,包括构造地貌、流水地貌、风沙地貌、冰川地貌、河口与海岸地貌和第四纪环境演变方面的进展。同时,还指出了学科发展中存在的问题。文中对未来发展进行了展望,提出了推动学科发展的若干建议(1)加强地貌学基本理论研究;(2)加强应用地貌研究,更好地为国家建设的重大需求服务;(3)加强地貌学的实验研究;(4)加强人才队伍建设。
[74] Orme A R.

Shifting paradigms in geomorphology:The fate of research ideas in an educational context

[J].Geomorphology,2002,47(2-4):325-342.

https://doi.org/10.1016/S0169-555X(02)00092-2      URL      [本文引用: 2]      摘要

The acceptance of new ideas into the mainstream of geomorphological education is illustrated from the development of theories dealing with Earth history, glaciation, uniform flow, mass movement, continental mobility, cyclic erosion, and drainage networks. The lag between the conception of new ideas and their incorporation into mainstream texts has varied from negligible to more than 200 years. On one hand, despite its then untestable assumptions, the Davisian cycle of erosion gained rapid favor as the dominant paradigm of the early 20th century before it was found wanting. In contrast, concepts of uniform flow and slope stability, confirmed in the 18th century, waited almost 200 years for incorporation into geomorphology texts sensu stricto, although they had long been available in books on hydraulics and soil mechanics. Continental mobilism had a wild ride, culminating in the eventual acceptance of the plate-tectonics paradigm in the later 20th century. Explanations for the fate of these and other ideas are varied. New ideas are often opposed by establishment conservatism, language barriers, the perceived surrealism of new concepts, and simple ignorance. In contrast, new ideas may be accepted, sooner or later, by virtue of simplicity, forceful and well-connected leadership, or the death of opponents. Although mitigated by the information revolution of recent decades, these forces still persist and influence the extension of new ideas into a larger arena.
[75] Leddra M.

Time Matters:Geology's Legacy to Scientific Thought

[M].Chichester:Wiley-Blackwell,2010.

[本文引用: 2]     

[76] Rhoads B L.

Whither physical geography

[J]?Annals of the Association of American Geographers,2004,94(4):748-755.

https://doi.org/10.1111/j.1467-8306.2004.00431.x      URL      [本文引用: 1]      摘要

The Tijuana maquiladora sector has grown enormously over the past two decades. Short-term time series characteristics of this segment of the regional economy are analyzed in an attempt to clarify labor market behavior associated with this remarkable performance. Parameter estimation is accomplished using linear transfer function analysis. Data are drawn from the January 1980-December 2000 sample period. Empirical results indicate that real wage rates, maquiladora plants, United States industrial activity, and the real exchange rate of the peso play significant roles in determining month-to-month fluctuations in maquiladora employment. Sub-sample simulation exercises are conducted using a random walk benchmark in order to examine forecast accuracy. Empirical results indicate that the linear transfer function technique provides relatively accurate forecasts all step-lengths.

/