地理科学, 2020, 40(5): 823-832 doi: 10.13249/j.cnki.sgs.2020.05.017

1982-2015年全球植被变化及其与温度和降水的关系

李茂华,1, 都金康,1,2, 李皖彤1, 李闰洁1, 吴森垚1, 王姗姗1

1.南京大学地理与海洋科学学院,江苏 南京 210093

2.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210093

Global Vegetation Change and Its Relationship with Precipitation and Temperature Based on GLASS-LAI in 1982-2015

Li Maohua,1, Du Jinkang,1,2, Li Wantong1, Li Runjie1, Wu Senyao1, Wang Shanshan1

1. School of Geography and Ocean Science, Nanjing University, Nanjing 210093, Jiangsu, China

2. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210093, Jiangsu, China

通讯作者: 都金康,教授。E-mail: njudjk@163.com

收稿日期: 2019-03-12   修回日期: 2019-06-25   网络出版日期: 2020-05-10

基金资助: 国家自然科学基金项目.  41371044
国家自然科学基金项目.  41471343
国家自然科学基金项目.  41771029

Received: 2019-03-12   Revised: 2019-06-25   Online: 2020-05-10

Fund supported: National Natural Science Foundation of China.  41371044
National Natural Science Foundation of China.  41471343
National Natural Science Foundation of China.  41771029

作者简介 About authors

李茂华(1994-),男,四川德阳人,硕士研究生,主要从事环境遥感与GIS应用方面研究E-mail:maohua.li7@foxmail.com , E-mail:li7@foxmail.com

摘要

采用1982-2015年的GLASS-LAI (Global Land Surface Satellite-Leaf Area Index )遥感数据和CRU(Climatic Research Unit)气象数据,利用Mann-Kendall趋势法分析了过去34 a全球9种植被的叶面积指数(Leaf Area Index,LAI)时空变化特征;使用相关分析和逐步线性回归分别探讨了全球9种植被LAI与降水、温度的年际与月关系。结果表明:全球植被总体呈现绿化趋势,其中变化较大的是草原、稀树草原、常绿阔叶林和多树草原;在植被生长的绿化和褐化趋势中,面积占比最大的植被类型均为草原,说明草原生态系统易受环境因素的影响。从年际关系看,草原和开放灌丛的LAI与年均降水多呈正相关关系,而温度对不同纬度植被的LAI存在正负2种影响。其原因为温度升高对中低纬度的植被生长有抑制作用,而对高纬度地区植被生长有促进作用。从年内关系看,南半球降水和温度共同作用于植被的生长;而北半球除常绿阔叶林的生长与温度关系更为紧密外,其它类型植被的生长主要受降水影响。逐步线性回归结果表明,当月温度的升高对常绿阔叶林、混交林和农作物的生长具有促进作用,而多树草原和草原2种植被的生长受当月降水的影响最为显著。

关键词: 全球植被 ; LAI ; 温度 ; 降水

Abstract

We analyzed the spatial-temporal changes in global vegetation and their dynamic responses to temperature and precipitation using GLASS-LAI (Global Land Surface Satellite-Leaf Area Index ) and CRU (Climatic Research Unit) meteorological data from 1982 to 2015. The results showed that: 1) Global vegetation showed an overall greening trend, which is paricularly significant over grasslands, savannas, evergreen broadleaf forests and woody savanas. Grasslands have the largest greening and browning area, indicating their vulnerability to climate. 2) In terms of the inter-annual relationships, the LAI of grasslands and open shrublands were overall positively correlated with precipitation, while temperature had different effects on the growth of vegetation at diverse latitudes. This could be attributed to that, the growth of vegetation at middle and low latitudes was inhibited by the increasing temperature, while facilitated by the rising temperature at high latitudes. 3) In terms of the intra-annual relationships, precipitation and temperature together promoted vegetation growth in the southern hemisphere, however, the vegetation in the northern hemisphere was mainly affected by precipitation, except evergreen broadleaf forests. 4) The results of stepwise multiple regression indicated that the rising instant temperature had positive influence on the growth of evergreen broadleaf forests, mixed forests, and croplands, while woody savannas and savannas were significantly impacted by the instant precipitation.

Keywords: global vegetation ; LAI ; temperature ; precipitation

PDF (8365KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李茂华, 都金康, 李皖彤, 李闰洁, 吴森垚, 王姗姗. 1982-2015年全球植被变化及其与温度和降水的关系. 地理科学[J], 2020, 40(5): 823-832 doi:10.13249/j.cnki.sgs.2020.05.017

Li Maohua, Du Jinkang, Li Wantong, Li Runjie, Wu Senyao, Wang Shanshan. Global Vegetation Change and Its Relationship with Precipitation and Temperature Based on GLASS-LAI in 1982-2015. Scientia Geographica Sinica[J], 2020, 40(5): 823-832 doi:10.13249/j.cnki.sgs.2020.05.017

全球植被变化是全球变化研究中非常重要的一个课题,植被作为陆地生态系统的主体,在陆地-大气的交互影响下,对全球物质和能量的循环起着决定性作用[1]。全球植被变化既受限于气候条件,对温度和降水变化敏感响应,又对气候变化起到反馈作用,影响着地表反照率、粗糙度和陆地碳储量等地球理化属性[2]。近年来,在全球、全国或是区域尺度下利用遥感数据对植被动态变化及其与气候关系的研究都取得了很多进展[3]。Nemani等研究了1982-1999年全球陆地净初级生产力(Net Primary Productivity, NPP)与气候的关系,认为全球气候朝着有利于植被生长的方向发展[4]。一些学者利用归一化植被指数(Normalized Difference Vegetation Index, NDVI),发现北半球高纬度地区植被生长季的NDVI与温度显著正相关[5]。温度对于寒冷的草原生态系统作用显著,而增长的降水对除北极区外的草原植被生长起促进作用[6]。在全球半干旱区域尺度上,也有学者提出植被总体呈增长趋势,并讨论了降水与温度对植被变化不同的作用程度[7,8,9]。于德永等研究发现东亚地区1982-1999年NPP在波动中呈现出增加趋势,年均NPP与年均温度呈显著相关关系[10]。朴世龙等分析认为,全国尺度上NDVI的增加源于温度升高,而区域尺度上则与降水更相关[11]。国内区域尺度上,李月臣等分析NDVI数据发现中国北方13个省1982-1999年间植被总体呈现增加趋势,植被变化与气温显著相关而与降水无显著相关,气温升高导致生长期提前和生长季延长是植被增加的一个重要原因[12]。方利等分析黑龙江流域植被NDVI数据,发现植被的NDVI在春季主要受温度影响,夏季受降水影响,秋季林地NDVI与温度正相关、草地NDVI与降水正相关[13]

前人分析研究NVDI或者其模拟的NPP等分别发现并探讨了各自研究区域下的植被变化,及其与温度、降水的关系,对于理解陆地-大气的交互作用很有意义。遥感技术为全球尺度下长时间序列的植被监测提供了可能性,很多科学工作者致力于研究各种植被指数,使其能够很好地反映植被生产力,但这些植被指数各有优劣,具有不同的应用场景[14]。其中经常使用的NDVI,在植被稀疏时易受土壤背景影响,而植被密集覆盖度较高时则会饱和[15]。叶面积指数作为植被指数之一,不仅能很好地反映植被生产力,而且对NDVI在植被高覆盖区易饱和的缺点进行了有效地改进[16]。梁博毅等人利用GLASS-LAI(Global Land Surface Satellite-Leaf Area Index,全球陆表叶面积指数)数据分析近30 a的亚马逊热带雨林变化,并重点论证了此数据的可用性[17]。有学者通过类比多种LAI数据产品,提出近30 a全球植被呈绿化趋势,其中气候变化起重要作用,但并未就植被对气候响应的关系做深入探讨[18]

本文利用1982-2015年的GLASS-LAI数据,结合同期的温度和降水数据,在全球尺度下,针对不同的植被生态系统,系统和全面地解读植被生长的时空变化及其与温度和降水的关系,旨在研究全球不同类型植被的时空变化特征及其与温度和降水的关系,以期科学地阐述气候对全球植被的影响,有助于了解不同类型的植被在陆地-大气交互作用下的响应。

1 数据与方法

1.1 数据来源与处理

GLASS-LAI数据产品,来源于国家科技基础条件平台——国家地球系统科学数据共享服务平台(http://www.geodata.cn),时间跨度为1982-2015年,时间分辨率为8 d,空间分辨率为0.05°,集合了AVHRR LAI(1981-2000)和MODIS LAI (2000-2015) 2个数据,使用广义回归神经网络训练法进行数据融合。通过与其他的产品进行对比验证,发现该产品具有很高的可靠性[19,20,21]。全球范围1982-2015年的气象数据来源于英国东安格利亚大学气候研究中心逐月的降水和温度数据集(CRU TS 4.01)[22],空间分辨率为0.5°,该数据已得到广泛应用和评价[23,24,25]。全球土地覆盖类型数据为0.05°空间分辨率的IGBP(International Geosphere-Biosphere Program)的IGBP-DIScover[26] (http://www.igbp.net),该产品将全球覆被划分为17种类型,本研究仅选择了其中9种重要植被类型,包括常绿阔叶林、混交林、郁闭灌丛、开放灌丛、农作物和自然植被混合、农作物、草原、稀树草原和多树草原(图1)。由于各种数据的投影和空间分辨率不一致,故对所有数据定义统一的投影(WGS 84),空间分辨率重采样到0.5°,并将8 d时间分辨率的叶面积指数(Leaf Area Index,LAI),数据采用均值法获得逐月和逐年的数据。

图1

图1   基于IGBP分类的全球主要植被类型的空间分布

Fig.1   Spatial distribution of Global main classes of vegetation based on IGBP classification


1.2 研究方法

1.2.1 全球LAI的年际趋势分析

利用MK检验法进行趋势分析,计算出植被不同程度的生长趋势。该方法具有无需样本服从特定分布,也不受极少数极端值干扰,适用于计算年均LAI的变化趋势[27,28]。结果需通过P<0.05的显著性检验,其中0.01<P<0.05为拟合效果显著,P<0.01为拟合效果非常显著。

1.2.2 全球LAI与降水、温度的年际相关分析

使用1982-2015年月LAI、降水、温度数据利用均值法获得逐年数据,并按照9种植被类型对年数据进行分类求平均。基于皮尔逊相关分析法[29],分别对LAI和降水、LAI和温度进行相关分析。其中,相关系数为正,表示2因子存在正相关关系;反之,存在负相关关系。

1.2.3 全球LAI与降水、温度的年内季节性关系与滞后效应

将1982-2015年的月LAI、降水和温度数据按9种植被类型计算得到同一月份的平均值,考虑到南北半球的植被生长季不同,所以分别对南北半球进行LAI与降水和温度的年内季节性讨论。利用逐步线性回归方法,探讨降水和温度的即时和滞后效应对LAI的影响[30]。将当月LAI作为因变量,把当月、前1个月、前2个月、前3个月的降水和温度作为逐步控制的自变量,即:当月降水(P0)、当月温度(T0)、前1个月降水(P1)、前1个月温度(T1)、前2个月降水(P2)、前2个月温度(T2)、前3个月降水(P3)、前3个月温度(T3)。逐步线性回归的公式如下:

yt=a0+i=1majxjt+εt

式中, yt为月平均LAI值、 xjt分别用P0P1P2P3T0T1T2T3代入计算, a0代表回归常数, aj是每个自变量的回归系数, εt表示残差。所有参数的数值都进行了标准化,且结果需通过0.05显著性检验。

2 结果与分析

2.1 全球LAI年际趋势分析

1982-2015年全球LAI总体呈显著增长趋势(图2),该部分面积占整个研究区有效趋势(通过0.05显著性检验)面积的84.98%(表1),其中LAI呈非常显著(P<0.01)增长趋势的面积占69.03%,主要位于北美中部和东部、南美中部、非洲中部和南部、萨赫勒、欧亚大陆西部、东南亚、北亚西部和澳大利亚东北部。仅15.02%的面积呈显著下降趋势,显著退化的地区主要位于北美西部、南美南部、非洲萨赫勒以南部分地区、东亚北部以及澳大利亚西南部。表1显示,草原(22.46%)、稀树草原(13.35%)、常绿阔叶林(11.55%)和多树草原(11.51%)对全球植被的绿化趋势贡献最大,而LAI呈下降趋势的植被主要为稀树草原(2.83%)、开放灌丛(3.24%)和草原(4.91%)3种类型。不同区域的草原存在明显的增长或退化趋势,可能是由于草原生态系统脆弱,极易受人为干扰和气候变化的影响[5,31]

图2

图2   1982-2015年全球年均LAI变化趋势的空间分布

Fig.2   Spatial distribution of global annual mean LAI trends from 1982 to 2015


表1   1982-2015年全球9种植被类型年均LAI显著变化的占比(%)

Table 1  Proportions of areas with significant changing of annual mean LAI among different classes of global nine vegetation types in 1982-2015(%)

下降
P < 0.01
下降 0.01<
P<0.05
上升
P<0.01
上升0.01<
P<0.05
总计
常绿阔叶林0.450.249.991.5612.24
混交林0.230.145.940.807.11
郁闭灌丛0.080.040.090.040.24
开放灌丛1.821.426.222.2011.67
多树草原1.080.569.911.6013.15
稀树草原1.821.0110.582.7716.19
草原2.981.9317.544.9227.37
农作物0.690.418.151.9111.16
农作物和自然
植被混合
0.060.050.620.140.87
总计9.215.8169.0315.95100.00

新窗口打开| 下载CSV


图3可以看出,除郁闭灌丛和开放灌丛没有通过0.05显著性检验外,其它植被类型的LAI均呈现非常显著(P<0.01)上升趋势。其中,上升速率最高的为常绿阔叶林(0.036/a),表明其生长变动的幅度较大。其它6种植被类型的年上升速率在0.002/a~0.018/a,速率从高到低依次为:农作物和自然植被混合>混交林>多树草原>稀树草原>农作物>草原。

图3

图3   1982-2015年全球9种植被类型的年均LAI变化趋势

Fig.3   Temporal evolution of annual mean LAI among different classes of global nine vegetation types during 1982-2015


2.2 全球LAI与降水、温度的年际相关分析

图4a为年均LAI和降水进行相关分析的空间分布结果。非常显著(P<0.01)的正相关关系广泛分布在澳大利亚、非洲南部、萨赫勒、东亚北部、欧亚大陆中部、美国中部和南美东南部区域,占有效面积的57.01%,显著(0.01<P<0.05)正相关占比36.72%,主要分布在上述地区及其周边;LAI与降水呈现负相关的区域只占6.27%,主要分布在加拿大巴芬岛南部。表2显示各类型植被LAI与降水呈负相关的比例非常低,仅占到有效面积的6.27%。草原和开放灌丛与降水呈现非常显著的正相关关系,分别占了研究区有效面积的29.14%和12.69%,与前人研究结论相似,由于这2种植被类型大多处于干旱与半干旱区,降水的增加很大程度上会促进植被生长[11,32];其他呈现正相关关系的依次是农作物(12.34%)、稀树草原(10.65%)、常绿阔叶林(3.51%)、多树草原(3.47%)。

图4

图4   1982-2015年全球年均LAI和降水(a)、年均LAI和温度(b)的相关性P值的空间分布

Fig.4   Global spatial distribution of the p-value for the correlation between annual mean LAI and precipitation (a), annual mean LAI and temperature (b) from 1982 to 2015


表2   1982-2015年全球9种植被年均LAI和降水显著相关的占比(%)

Table 2  Proportions of areas with significant correlation between annual mean LAI and participation among different classes of global nine vegetation types in 1982-2015 (%)

负相关
P < 0.01
负相关
0.01< P < 0.05
正相关
P < 0.01
正相关
0.01< P < 0.05
总计
常绿阔叶林0.110.321.052.463.95
混交林0.080.370.250.971.67
郁闭灌丛0.000.000.520.230.74
开放灌丛0.270.9112.695.2919.16
多树草原0.410.721.192.284.59
稀树草原0.110.485.215.4411.24
草原0.841.2629.1414.1745.41
农作物0.080.256.785.5612.67
农作物和自然
植被混合
0.010.040.180.330.57
总计1.914.3657.0136.72100.00

新窗口打开| 下载CSV


年际LAI和温度的相关关系空间分布见图4b,与降水不同的是,显著的负相关关系出现在澳大利亚中部与北部、非洲东部以及南美中部,占总面积的22.01%;而占比77.99%的显著正相关出现在北半球高纬地区,如欧亚大陆,以及赤道附近降水充沛的区域,如非洲中部、南美与东南亚。从表3可以看出,开放灌丛和草原的LAI与温度明显存在2种相关关系,其中开放灌丛因所处不同地区,温度对其有正负两种影响,澳洲中西部处于高温缺水环境中,升温对其生长起到抑制作用,只有增加降水才能促进其生长[33],而俄罗斯北部和东部处于高纬度地区,温度对开放灌丛的生长则起到促进作用;草原生态系统较为脆弱,不仅受降水影响,温度对其也有较大影响。正相关关系中,除草原(17.29%)外,常绿阔叶林(14.88%)占比最大。因为常绿阔叶林生态系统较为稳定,通常受到较好的水热条件,温度的升高更有助于其进行光合作用,增加植被生产力。温度升高对LAI有促进作用的植被类型依次为:稀树草原(13.54%)、多树草原(10.05%)、农作物(8.37%)、混交林(5.18%)及农作物和自然植被混合(0.82%)。

表3   1982-2015年全球9种植被年均LAI和温度显著相关的占比(%)

Table 3  Proportions of areas with significant correlation between annual mean LAI and temperature among different classes of global nine vegetation types in 1982-2015 (%)

负相关
P< 0.01
负相关
0.01< P < 0.05
正相关
P < 0.01
正相关
0.01< P < 0.05
总计
常绿阔叶林0.670.4610.524.3616.02
混交林0.040.162.502.685.39
郁闭灌丛0.140.150.000.030.32
开放灌丛4.723.284.253.5815.84
多树草原0.310.475.544.5110.83
稀树草原1.201.417.885.6616.14
草原3.663.939.288.0124.88
农作物0.450.884.613.769.69
农作物和自然
植被混合
0.040.050.430.390.90
总计11.2310.7845.0132.98100.00

新窗口打开| 下载CSV


2.3 全球 LAI与降水、温度的年内季节性响应与滞后效应

图5是南北半球不同植被34 a月均LAI随降水、温度的季节性波动曲线。北半球除常绿阔叶林生长全年较为稳定外,其它植被的生长季明显开始于3月份,LAI在7月份达到最大值之后,逐月下降直到次年3月(图5a)。月降水量总体上从3月开始增加,到8月达到最大值,随后逐渐下降(图5c)。北半球温度的季节性波动较为复杂,除常绿阔叶林全年波动不明显外,其余可分为2种模式:一种是多峰模式,即全年多个月份出现局部温度峰值,比如:郁闭灌丛、开放灌丛、草原、稀树草原和多树草原等;另一种是单峰模式,全年仅在8月出现一次最高温的模式,比如混交林、农作物、农作物和自然植被混合等(图5e)。综合图5a、c、e可以看出,常绿阔叶林LAI变化趋势与温度变化较为一致,受降水的影响较小;农作物及农作物和自然植被的LAI与降水和温度的变化趋势较为一致;其它类型植被的LAI则与降水的变化趋势较为一致。

图5

图5   1982-2015年南(b,d,f)北(a,c,e)半球主要植被类型LAI、降水、温度的年内波动

Fig.5   Intra-annual variations of LAI, precipitation and temperature among different classes of global main vegetation in the Northern (a,c,e) and Southern (b,d,f) Hemisphere in 1982-2015


南半球植被的生长季从8月份开始,到次年的2月份达到峰值,且温度的季节性波动曲线与LAI的季节性波动曲线非常吻合(图5b、f),说明温度的升高对南半球植被生长整体呈现促进作用。月降水量在2月份达到峰值,然后开始下降,到9月份达到最低值,之后再逐渐上升(图5d),总体上看,降水同样控制着LAI的变化。草原、多树草原、稀树草原的LAI在3月达到最大值,而降水在3月份有小幅下降,说明降水对LAI可能存在滞后效应。

本研究在前人研究的基础上,增加LAI对降水、温度的季节性响应与滞后效应分析,深化了关于全球主要植被类型的LAI与气候因子的年内响应关系的探讨。通过逐步线性回归模型从以下8个气候因子:当月降水(P0)、当月温度(T0)、前1个月降水(P1)、前1个月温度(T1)、前2个月降水(P2)、前2个月温度(T2)、前3个月降水(P3)、前3个月温度(T3)来选择合适的气候因子,并基于拟合结果,阐述滞后和即时的降水和温度对全球不同类型的植被LAI的影响(表4)。

表4   1982-2015年全球9种植被月均LAI和多种气候因子的逐步线性回归拟合

Table 4  Stepwise multivariate regression between monthly mean LAI and climate predictors as identified among different classes of global nine vegetation types from 1982 to 2015

植被类型逐步线性回归R2F
常绿阔叶林LAI=0.575T0+0.328T3+ 0.005P3-19.0770.34371.354
混交林LAI=0.1T0+0.058T3+0.036P0-0.059T1-0.011P2-0.02P3+0.380.878484.502
郁闭灌丛LAI=0.011T3+0.002P0+0.002P1+0.3360.479125.039
开放灌丛LAI=0.016T3+0.006P0-0.034T0-0.02T1-0.011P2-0.006P1+1.360.889542.541
多树草原LAI=0.031P0+0.007P1-0.072T1-0.034T0-0.018P3-0.009P2+2.440.879489.831
稀树草原LAI=0.053T3+0.012P0-0.072T0-0.028T1-0.023T2-0.014P2-0.007P3-0.005P1+3.8450.722131.927
草原LAI=0.008P0-0.06T0-0.011P3-0.007P2-0.007P1+2.3670.671165.877
农作物LAI=0.112T0+0.026T3+0.008P0-0.008P1-0.003P2-1.2510.892669.094
农作物和自然植被混合LAI=0.155T0+0.005P0-0.052T1-0.002P3-0.5310.742291.878

注:T0当月温度,T1前1个月温度,T2前2个月温度,T3前3个月温度,P0当月降水,P1前1个月降水,P2前2个月降水,P3前3个月降水。

新窗口打开| 下载CSV


从拟合结果看,只有常绿阔叶林和郁闭灌丛拟合结果的相关系数较低,其他植被拟合结果的相关系数均较高。温度T3对除了草原、多树草原和农作物与自然植被混合外的植被的LAI起到促进作用,其中对开放灌丛,郁闭灌丛和稀树草原起到主导作用。农作物、农作物及自然植被混合主要受T0正影响,即农作物主要受当月温度影响,因为受人类农耕活动影响,农作物有足够的水分条件,当温度升高,且没有达到最适宜温度时,农作物的光合作用增强,生产力增加[34]。多树草原和草原主要表现出受降水P0正影响,说明促进其生长的首要因素是当月降水。

温度和降水对不同植被的LAI还存在抑制作用,与前人研究结论相似的是温度的影响程度普遍大于降水[5,6,12]。温度T1对除了常绿阔叶林、农作物、郁闭灌丛和草原外的其他植被均有不同程度的抑制,其中对混交林、多树草原和农作物与自然植被混合起到了主要抑制作用;降水P1P2对开放灌丛和农作物,P2P3对混交林和多树草原,前3个月P1P2P3对稀树草原和草原均存在抑制作用,但影响普遍较小。

3 结论与讨论

3.1 结论

基于1982-2015年GLASS-LAI遥感数据,结合同期CRU降水和温度数据,分析全球主要植被类型近34 a的年际生长趋势及其对降水、温度变化的响应,研究总结出以下结论:

1) 全球植被总体呈现绿化趋势,LAI显著增长的面积是显著下降的区域的5倍以上,广泛分布在北美、南美、非洲撒哈拉以南、欧亚大陆以及澳大利亚东北部。草原、稀树草原、常绿阔叶林和多树草原呈现绿化趋势的面积最大,其中常绿阔叶林LAI的增长速率最大。

2) 随着全球气候变化和人类活动的增加,草原生态系统表现出较高的敏感性,既存在显著退化的区域,也存在显著绿化的区域,且影响因素各不相同。在较为干旱的区域生长的植被,尤其是缺水环境下的草原与开放灌丛,降水的增加是利于其生长主要的条件,而温度升高对其生长起到抑制作用。在水分条件充足的区域,以常绿阔叶林为代表的植被LAI往往与温度呈现较好的正相关关系。

3) 从整体上看,南半球降水和温度的升高对植被生长起促进作用,但降水在个别月份的小幅波动对多树草原、稀树草原和混交林的当月LAI值没有影响,却对后一月LAI值有影响,说明降水可能存在一定的滞后效应。北半球只有常绿阔叶林受到温度同步控制并表现正相关关系,其它类型的植被LAI季节性波动主要由降水影响。

4) 从逐步线性回归的结果看,当月降水、温度仍然是最重要的年内气候因子,当月降水的增加促进了混交林、多树草原和草原的生长;而当月温度的升高抑制了开放灌丛和稀树草原的生长,却促进常绿阔叶林、混交林和农作物的生长。

3.2 讨论

在全球变暖的背景下,本文利用34 a的长时序LAI与气象数据,较为完整地分析了全球9种主要植被的变化趋势,系统地阐述了植被与降水、温度的年际和年内关系。本研究有助于进一步了解,在全球陆地-大气交互作用下,不同类型植被与温度、降水的年际与年内关系。

虽然NVDI和NPP等都常用来研究植被动态变化,但NDVI易受云和水汽影响,在植被覆盖度较低或较高的情况下会出现不敏感或饱和的现象[15,35],如在分析茂密的常绿阔叶林或非生长季的草原时会存在一定偏差。NPP有多种估算模型[36],有不少需要借助NDVI来模拟,可能引入后者存在的误差。本研究使用的LAI被认为能够稳健的描述植被动态变化[37],具体使用的GLASS-LAI数据,去除了云和阴影的影响,具有时间跨度长且时间空间连续等特性,弥补了NDVI存在的缺陷,被认为有较高的可靠性[38,39,40]

需要说明的是,本研究结果存在一定的不确定性,植被绿化的因素除降水和温度外,还受太阳辐射、CO2浓度、人类活动等诸多因素影响;土地覆盖类型仅为一期数据,没有考虑土地覆被类型的变化对实验结果产生的影响;受降水和温度数据的空间分辨率和时间分辨率的限制,LAI数据重采样之后可能存在混合像元的问题,因此后续工作还需结合更多更准确的数据,深入地探讨全球性与区域性植被LAI的时空变化及其原因。

参考文献

Foley J A, Levis S, Costa M H et al.

Incorporating dynamic vegetation cover within global climate models

[J]. Ecological Applications, 2000,10(6):1620-1632.

[本文引用: 1]

Fischlin A, Midgley G F, Hughs L et al. Ecosystems, their properties, goods and services[M]. Cambridge, Uk: Cambridge University Press, 2007.

[本文引用: 1]

谢今范, 毛德华, 任春颖.

植被-气候关系遥感分析研究进展

[J]. 东北师大学报(自然科学版), 2011,43(3):145-150.

[本文引用: 1]

[ Xie Jinfan, Mao Dehua, Ren Chunying.

An overview of researches in relations between vegetationand climate based on remote sensing

Journal of Northeast Normal University(Natural Science Edition), 2011,43(3):145-150.]

[本文引用: 1]

Nemani R R, Keeling C D, Hashimoto H et al.

Climate-driven increases in global terrestrial net primary production from 1982 to 1999

[J]. Science, 2003,300(5625):1560-1563.

DOI:10.1126/science.1082750      URL     PMID:12791990      [本文引用: 1]

Recent climatic changes have enhanced plant growth in northern mid-latitudes and high latitudes. However, a comprehensive analysis of the impact of global climatic changes on vegetation productivity has not before been expressed in the context of variable limiting factors to plant growth. We present a global investigation of vegetation responses to climatic changes by analyzing 18 years (1982 to 1999) of both climatic data and satellite observations of vegetation activity. Our results indicate that global changes in climate have eased several critical climatic constraints to plant growth, such that net primary production increased 6% (3.4 petagrams of carbon over 18 years) globally. The largest increase was in tropical ecosystems. Amazon rain forests accounted for 42% of the global increase in net primary production, owing mainly to decreased cloud cover and the resulting increase in solar radiation.

Ichii K, Kawabata A, Yamaguchi Y.

Global correlation analysis for NDVI and climatic variables and NDVI trends:1982-1990

[J]. International Journal Remote Sensing, 2002,23(18):3873-3878.

DOI:10.1080/01431160110119416      URL     [本文引用: 3]

Gao Q, Schwartz M W, Zhu W et al.

Changes in global grassland productivity during 1982 to 2011 attributable to climatic factors

[J]. Remote Sensing, 2016,8(5):384-396.

DOI:10.3390/rs8050384      URL     [本文引用: 2]

郑艺, 张丽, 周宇, .

1982-2012 年全球干旱区植被变化及驱动因子分析

[J]. 干旱区研究, 2017(1):59-66.

URL     [本文引用: 1]

[ Zheng Yi, Zhang Li, Zhou Yu et al.

Vegetation change and its driving factors in global drylands during the period of 1982-2012

Arid Zone Research, 2017(1):59-66.]

[本文引用: 1]

Fensholt R, Langanke T, Rasmussen K et al.

Greenness in semi-arid areas across the globe 1981-2007—An earth observing satellite based analysis of trends and drivers

[J]. Remote Sensing of Environment, 2012,121:144-158.

DOI:10.1016/j.rse.2012.01.017      URL     [本文引用: 1]

Semi-arid areas, defined as those areas of the world where water is an important limitation for plant growth, have become the subject of increased interest due to the impacts of current global changes and sustainability of human lifestyles. While many ground-based reports of declining vegetation productivity have been published over the last decades, a number of recent publications have shown a nuanced and, for some regions, positive picture. With this background, the paper provides an analysis of trends in vegetation greenness of semi-arid areas using AVHRR GIMMS from 1981 to 2007. The vegetation index dataset is used as a proxy for vegetation productivity and trends are analyzed for characterization of changes in semi-arid vegetation greenness. Calculated vegetation trends are analyzed with gridded data on potential climatic constraints to plant growth to explore possible causes of the observed changes. An analysis of changes in the seasonal variation of vegetation greenness and climatic drivers is conducted for selected regions to further understand the causes of observed inter-annual vegetation changes in semi-arid areas across the globe. It is concluded that semi-arid areas, across the globe, on average experience an increase in greenness (0.015 NDVI units over the period of analysis). Further it is observed that increases in greenness are found both in semi-arid areas where precipitation is the dominating limiting factor for plant production (0.019 NDVI units) and in semi-arid areas where air temperature is the primarily growth constraint (0.013 NDVI units). Finally, in the analysis of changes in the intra-annual variation of greenness it is found that seemingly similar increases in greenness over the study period may have widely different explanations. This implies that current generalizations, claiming that land degradation is ongoing in semi-arid areas worldwide, are not supported by the satellite based analysis of vegetation greenness. (c) 2012 Elsevier Inc.

Forzieri G, Alkama R, Miralles D G et al.

Satellites reveal contrasting responses of regional climate to the widespread greening of Earth

[J]. Science, 2017,356(6343):1180-1184.

DOI:10.1126/science.aal1727      URL     PMID:28546316      [本文引用: 1]

Changes in vegetation cover associated with the observed greening may affect several biophysical processes, whose net effects on climate are unclear. We analyzed remotely sensed dynamics in leaf area index (LAI) and energy fluxes in order to explore the associated variation in local climate. We show that the increasing trend in LAI contributed to the warming of boreal zones through a reduction of surface albedo and to an evaporation-driven cooling in arid regions. The interplay between LAI and surface biophysics is amplified up to five times under extreme warm-dry and cold-wet years. Altogether, these signals reveal that the recent dynamics in global vegetation have had relevant biophysical impacts on the local climates and should be considered in the design of local mitigation and adaptation plans.

于德永, 潘耀忠, 姜萍, .

东亚地区植被净第一性生产力对气候变化的时空响应

[J]. 北京林业大学学报, 2005,27(2):96-101.

[本文引用: 1]

[ Yu Deyong, Pan Yaozhong, Jiang Ping et al.

Spatial and temporal response of NPP of east Asian vegetations to climate changes

Journal of Beijing Forestry University, 2005,27(2):96-101.]

[本文引用: 1]

Piao S L, Fang J Y, Ji W.

Variation in a satellite-based vegetation index in relation to climate in China

[J]. Journal of Vegetation Science, 2004,15(2):219-226.

[本文引用: 2]

李月臣, 宫鹏, 刘春霞, .

北方13省1982-1999年植被变化及其与气候因子的关系

[J]. 资源科学, 2006,28(2):109-117.

[本文引用: 2]

[ Li Yuechen, Gong Peng, Liu Chunxia et al.

Vegetation cover changes and correlation with climatic factors in Northern China during 1982-1999

Resources Science, 2006,28(2):109-117.]

[本文引用: 2]

方利, 王文杰, 蒋卫国, .

2000-2014年黑龙江流域(中国)植被覆盖时空变化及其对气候变化的响应

[J]. 地理科学, 2017,37(11):1745-1754.

[本文引用: 1]

[ Fang Li, Wang Wenjie, Jiang Weiguo et al.

Spatio-temporal variations of vegetation cover and its responses to climate change in the Heilongjiang Basin of China from 2000 to 2014

Scientia Geographica Sinica, 2017,37(11):1745-1754.]

[本文引用: 1]

Zhu Z, Bi J, Pan Y et al.

Global data sets of vegetation leaf area index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011

[J]. Remote Sensing, 2013,5(2):927-948.

[本文引用: 1]

Pettorelli N, Vik J O, Mysterud A et al.

Using the satellite-derived NDVI to assess ecological responses to environmental change

[J]. Trends in Ecology & Evolution, 2005,20(9):503-510.

DOI:10.1016/j.tree.2005.05.011      URL     PMID:16701427      [本文引用: 2]

Assessing how environmental changes affect the distribution and dynamics of vegetation and animal populations is becoming increasingly important for terrestrial ecologists to enable better predictions of the effects of global warming, biodiversity reduction or habitat degradation. The ability to predict ecological responses has often been hampered by our rather limited understanding of trophic interactions. Indeed, it has proven difficult to discern direct and indirect effects of environmental change on animal populations owing to limited information about vegetation at large temporal and spatial scales. The rapidly increasing use of the Normalized Difference Vegetation Index (NDVI) in ecological studies has recently changed this situation. Here, we review the use of the NDVI in recent ecological studies and outline its possible key role in future research of environmental change in an ecosystem context.

Xiao Z, Liang S, Wang J et al.

Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(1):209-223.

DOI:10.1109/TGRS.2013.2237780      URL     [本文引用: 1]

梁博毅, 刘素红, 瞿瑛, .

利用GLASS LAI 数据分析 1982-2012 年亚马逊热带雨林变化

[J]. 遥感学报, 2016,20(1):149-156.

[本文引用: 1]

[ Liang Boyi, Liu Suhong, Qu Ying et al.

Changes in the Amazon rainforest from 1982 to 2012 using GLASS LAI data

Journal of Remote Sensing, 2016,20(1):149-156.]

[本文引用: 1]

Zhu Z, Piao S, Myneni R B et al.

Greening of the earth and its drivers

[J]. Nature Climate Change, 2016,6(8):791-795.

[本文引用: 1]

Zhao X, Liang S. Liu S. et al.

Global Land Surface Satellite (GLASS) remote sensing data processing system and products

[J]. Remote Sensing, 2013,5(5):2436-2450.

DOI:10.3390/rs5052436      URL     [本文引用: 1]

Fang H, Jiang C, Li W et al.

Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties

[J]. Journal of Geophysical Research: Biogeosciences, 2013,118(2):529-548.

[本文引用: 1]

Fensholt R, Rasmussen K, Nielsen T T et al.

Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data

[J]. Remote Sensing of Environment, 2009,113(9):1886-1898.

[本文引用: 1]

Hijmans R J, Cameron S E, Parra J L et al.

Very high resolution interpolated climate surfaces for global land areas

[J]. International Journal of Climatology, 2005,25(15):1965-1978.

[本文引用: 1]

Shushi Peng, Shilong Piao, Philippe, et al.

Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation

[J]. Nature, 2013,501(7465):88-92.

DOI:10.1038/nature12434      URL     PMID:24005415      [本文引用: 1]

Temperature data over the past five decades show faster warming of the global land surface during the night than during the day. This asymmetric warming is expected to affect carbon assimilation and consumption in plants, because photosynthesis in most plants occurs during daytime and is more sensitive to the maximum daily temperature, Tmax, whereas plant respiration occurs throughout the day and is therefore influenced by both Tmax and the minimum daily temperature, Tmin. Most studies of the response of terrestrial ecosystems to climate warming, however, ignore this asymmetric forcing effect on vegetation growth and carbon dioxide (CO2) fluxes. Here we analyse the interannual covariations of the satellite-derived normalized difference vegetation index (NDVI, an indicator of vegetation greenness) with Tmax and Tmin over the Northern Hemisphere. After removing the correlation between Tmax and Tmin, we find that the partial correlation between Tmax and NDVI is positive in most wet and cool ecosystems over boreal regions, but negative in dry temperate regions. In contrast, the partial correlation between Tmin and NDVI is negative in boreal regions, and exhibits a more complex behaviour in dry temperate regions. We detect similar patterns in terrestrial net CO2 exchange maps obtained from a global atmospheric inversion model. Additional analysis of the long-term atmospheric CO2 concentration record of the station Point Barrow in Alaska suggests that the peak-to-peak amplitude of CO2 increased by 23 +/- 11% for a +1 degrees C anomaly in Tmax from May to September over lands north of 51 degrees N, but decreased by 28 +/- 14% for a +1 degrees C anomaly in Tmin. These lines of evidence suggest that asymmetric diurnal warming, a process that is currently not taken into account in many global carbon cycle models, leads to a divergent response of Northern Hemisphere vegetation growth and carbon sequestration to rising temperatures.

De Jong R, Schaepman M E, Furrer R et al.

Spatial relationship between climatologies and changes in global vegetation activity

[J]. Global Change Biology, 2013,19(6):1953-1964.

DOI:10.1111/gcb.12193      URL     PMID:23512439      [本文引用: 1]

Vegetation forms a main component of the terrestrial biosphere and plays a crucial role in land-cover and climate-related studies. Activity of vegetation systems is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature. However, little remains known about the processes underlying these changes at large spatial scales. In this study, we aimed at quantifying the spatial relationship between changes in potential climatic growth constraints (i.e. temperature, precipitation and incident solar radiation) and changes in vegetation activity (1982-2008). We demonstrate an additive spatial model with 0.5 degrees resolution, consisting of a regression component representing climate-associated effects and a spatially correlated field representing the combined influence of other factors, including land-use change. Little over 50% of the spatial variance could be attributed to changes in climatologies; conspicuously, many greening trends and browning hotspots in Argentina and Australia. The nonassociated model component may contain large-scale human interventions, feedback mechanisms or natural effects, which were not captured by the climatologies. Browning hotspots in this component were especially found in subequatorial Africa. On the scale of land-cover types, strongest relationships between climatologies and vegetation activity were found in forests, including indications for browning under warming conditions (analogous to the divergence issue discussed in dendroclimatology).

Harris I P, Jones P D, Osborn T J. et al.

Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset

[J]. International Journal of Climatology, 2014 34(3):623-642.

[本文引用: 1]

Hansen M C, Defries R S, Townshend J R G et al.

Global land cover classi cation at 1km spatial resolution using a classification tree approach

[J]. International Journal of Remote Sensing, 2000,21(6-7):1331-1364.

[本文引用: 1]

Kendall M G.

A new measure of rank correlation

[J]. Biometrika, 1938,30(1/2):81-93.

[本文引用: 1]

De Jong R, de Bruin S, de Wit A et al.

Analysis of monotonic greening and browning trends from global NDVI time-series

[J]. Remote Sensing of Environment, 2011,115(2):692-702.

[本文引用: 1]

Benesty J, Chen J, Huang Y et al.

Pearson correlation coefficient, Noise reduction in speech processing

[M]. Berlin, Heidelberg:Springer, 2009: 1-4.

[本文引用: 1]

Badreldin N, Sanchez-Azofeifa A.

Estimating forest biomass dynamics by integrating multi-temporal Landsat satellite images with ground and airborne LiDAR data in the Coal Valley Mine, Alberta, Canada

[J]. Remote Sensing, 2015,7(3):2832-2849.

[本文引用: 1]

Zhang Y, Dong S, Gao Q et al.

Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau

[J]. Science of the Total Environment, 2016,562:353-363.

DOI:10.1016/j.scitotenv.2016.03.221      URL     PMID:27100015      [本文引用: 1]

马有绚.

干旱半干旱地区植被指数与气候的关系

[D]. 兰州: 兰州大学, 2016.

[本文引用: 1]

[ Ma Youxun.

The relationship between vegetation index and cliamate factors in arid and semi-arid area

Lanzhou: Lanzhou University, 2016.]

[本文引用: 1]

张彬, 朱建军, 刘华民, .

极端降水和极端干旱事件对草原生态系统的影响

[J]. 植物生态学报, 2014,38(9):1008-1018.

DOI:10.3724/SP.J.1258.2014.00095      URL     [本文引用: 1]

当前人类活动的加剧显著地影响着全球大气循环的格局。大气循环的多个模型均预测未来全球气候变化的显著特征是极端降水事件和极端干旱事件发生的频率会显著增加。水分是干旱、半干旱区草原植物生长发育的限制性资源, 而草原生态系统是陆地生态系统中对降水格局变化非常敏感的系统。但是, 关于极端降水事件和极端干旱事件对草原生态系统结构和功能的影响还是以分散的个案研究为主, 甚至关于极端气候事件的定义迄今也不尽相同。为此, 该文在分析极端气候事件定义及其研究方法的基础上, 总结了极端降水事件和极端干旱事件对草原生态系统土壤水分和养分状况、植物生长发育和生理特性、群落结构、生产力和碳循环过程的影响, 并提出了未来极端气候事件研究中应重点关注的5个重要方向, 以及控制试验研究的2个关键科学问题, 对开展全球变化背景下草原生态系统对极端气候事件响应机制的研究具有指导意义。

[ Zhang Bin, Zhu Jianjun, Liu Huamin et al.

Effects of extreme rainfall and drought events on grassland ecosystems

Chinese Journal of Plant Ecology, 2014,38(9):1008-1018.]

[本文引用: 1]

郭建平.

气候变化对中国农业生产的影响研究进展

[J]. 应用气象学报, 2015,26(1):1-11.

[本文引用: 1]

[ Guo Jianping.

Advances in impacts of climate change on agricultural production in China

Journal of Applied Meteorological Science, 2015,26(1):1-11.]

[本文引用: 1]

Gamon J A, Field C B, Goulden M L et al.

Relationships between NDVI, canopy structure, and photosynjournal in three Californian vegetation types

[J]. Ecological Applications, 1995,5(1):28-41.

[本文引用: 1]

蒙继华.

农作物长势遥感监测指标研究

[D]. 北京:中国科学院研究生院(遥感应用研究所), 2006.

[本文引用: 1]

[ Meng Jihua.

Research to crop growth monitoring indicators with remote sensing

Beijing: Graduate University of Chinese Academy of Sciences(Institute of Remote Sensing Applications Chinese Academy of Sciences), 2006. ]

[本文引用: 1]

Chen J M, Black T A.

Defining leaf area index for non-flat leaves

[J]. Plant Cell and Environment, 1992,15(4):421-429.

[本文引用: 1]

Xiao Z, Liang S, Wang J et al.

Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(1):209-223.

[本文引用: 1]

Xiao Z, Liang S, Wang J et al.

Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(9):1-18.

DOI:10.1109/TGRS.2015.2471975      URL     [本文引用: 1]

Liang S, Zhao X, Liu S et al.

A long-term Global Land Surface Satellite (GLASS) data-set for environmental studies

[J]. International Journal of Digital Earth, 2013,6(sup1):5-33.

DOI:10.1080/17538947.2013.805262      URL     [本文引用: 1]

/