基于土壤因素耦合的喀斯特流域水文干旱模拟——以贵州省为例
作者简介:贺中华(1976-),男,贵州兴义人,副教授,博士研究生,研究方向:环境遥感。E-mail:zhonghuahe@gznu.edu.cn
收稿日期: 2012-08-13
要求修回日期: 2012-11-23
网络出版日期: 2013-08-20
基金资助
贵州省水利厅自然科研基金((KT201105,KT201010,KT200802)、贵州省科技厅自然科研基金(黔科合J字[2010]2026号)、贵州省教育厅自然科研基金(黔教科 2009(0039)和黔教科2006307)资助
The Hydrological Drought Simulating in Karst Basin Based on Coupled Soil Factors ——Taking Guizhou Province as A Case
Received date: 2012-08-13
Request revised date: 2012-11-23
Online published: 2013-08-20
Copyright
在贵州省选择40个典型流域为研究样区,根据地物光谱特征,构建土壤粗糙度指数(SRI)、土壤水体指数(SWBI)、土壤相对湿度(SRH);利用面向对象分类技术,提取土壤类型、土壤相对覆盖度、土壤相对粗糙度、土壤相对湿度的遥感信息;从土壤系统结构与土壤系统功能的关系角度,首先,分析土壤单因素单因子储水空间对流域储水能力的影响、单因素双因子耦合生成新的储水空间对流域储水能力的影响,建立单因子、双因子耦合与径流深的拟合模型;其次,分析土壤双因素耦合、三因素耦合以及四因素耦合生成新的储水空间对流域储水能力的影响,建立土壤单因素、多因素耦合与径流深的拟合模型。研究表明:① 土壤储水空间是流域储水能力的综合体现,且深受土壤类型、土壤覆盖度、土壤粗糙度、土壤湿度影响;② 土壤四因素对流域水文干旱影响从大到小排序:土壤相对粗糙度(R=0.968)>土壤相对覆盖度(R=0.56)>土壤相对湿度(R=0.558)>土壤类型(R=0.464);③ 无论是双因素耦合,还是三因素、四因素耦合,耦合生成新的土壤因素对流域水文干旱影响特别显著,且可用线性模型拟合。
贺中华 , 陈晓翔 . 基于土壤因素耦合的喀斯特流域水文干旱模拟——以贵州省为例[J]. 地理科学, 2013 , 33(6) : 724 -734 . DOI: 10.13249/j.cnki.sgs.2013.06.724
In this article, 40 typical watershed in Guizhou Province were selected as the sample areas to build the soil roughness index (SRI) ,soil water body index (SWBI) and soil relative humidity (SRH) according to the spectral characteristics. The remote sensing information of soil type, soil relative coverage, soil relative roughness, and soil relative humidity were extracted using the object-oriented classification techniques. From the relationship perspective between the soil-system structure and function, firstly, the influences of the soil water-storage space of the single-factor and the generating-newly soil water-storage space of two-factor coupled of the single factor on the watershed-storage capacity were analyzed, and the fitted models between the single-factors, two-factors coupled and runoff depths were build up respectively. Secondly, the impacts of the generating-newly soil water-storage space of the double factors coupled, three factors coupled and four factors coupled on the watershed-storage capacity were analyzed, and the fitted models between the single factor, multi-factors coupled and runoff depths respectively were build up. Studies have shown that: 1)The soil water-storage space is a comprehensive reflection of the basin water-storage capacity, affected deeply by the soil type, soil coverage, soil roughness and soil moisture content. 2) The descending order of the influences of the four factors on wartershed hydrological droughts is the soil relatively roughness (R=0.968)>soil relative coverage (R=0.56)>soil relative humidity (R=0.558)>soil type (R=0.464). 3) Whether the double factors coupled, or three factors coupled and four factors coupled ,the influences of the coupled generating-newly factors on wartershed hydrological droughts are particularly significant, and be fitted by a linear model.
Fig.1 Sketch map of the study area图1 研究区概况 |
Table 1 The fitting models between the single-factor of soil type and runoff depths表1 土壤类型单因子与径流深拟合模型 |
因子 | R | R2 | 模型 | F | Sig. | 因子 | R | R2 | 模型 | F | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|
① 红壤 | 0.464 | 0.215 | 10.425 | 0.003 | ⑥ 石灰土 | 0.455 | 0.207 | 9.942 | 0.003 | ||
② 黄壤 | 0.547 | 0.299 | 16.220 | 0.000 | ⑦ 石质土 | 0.001 | 0.000 | 0.000 | 0.996 | ||
③ 黄棕壤 | 0.174 | 0.030 | 1.183 | 0.284 | ⑧ 粗骨土 | 0.087 | 0.008 | 0.293 | 0.592 | ||
④ 棕壤 | 0.047 | 0.002 | 0.085 | 0.772 | ⑨ 水稻土 | 0.598 | 0.357 | 21.141 | 0.000 | ||
⑤ 紫色泥土 | 0.150 | 0.023 | 0.880 | 0.354 |
注:WRD表示径流深极差标准化值,下同;S红壤表示红壤遥感信息,即面积百分比极差标准化值,其它意义相同。 |
Table 2 The fitting models between the single-factor of soil relative coverage and runoff depths表2 土壤相对覆盖度单因子与径流深拟合模型 |
因子 | R | R2 | 模型 | F | Sig. |
---|---|---|---|---|---|
① 水体 | 0.560 | 0.314 | 17.391 | 0.000 | |
② 土壤相对覆盖度1 | 0.163 | 0.027 | 1.038 | 0.315 | |
③ 土壤相对覆盖度2 | 0.257 | 0.066 | 2.681 | 0.110 | |
④ 土壤相对覆盖度3 | 0.132 | 0.017 | 0.673 | 0.417 | |
⑤ 土壤相对覆盖度4 | 0.579 | 0.335 | 19.185 | 0.000 | |
⑥ 土壤相对覆盖度5 | 0.755 | 0.570 | 50.275 | 0.000 |
Table 3 The fitting models between the single-factor of soil relative roughness and runoff depths表3 土壤相对粗糙度单因子与径流深拟合模型 |
因子 | R | R2 | 模型 | F | Sig. | 因子 | R | R2 | 模型 | F | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|
① 极细粒 | 0.968 | 0.937 | 566.351 | 0.000 | ④ 粗粒 | 0.489 | 0.239 | 11.960 | 0.001 | ||
② 细粒 | 0.626 | 0.392 | 24.521 | 0.000 | ⑤ 极粗粒 | 0.163 | 0.027 | 1.041 | 0.314 | ||
③ 中粒 | 0.000 | 0.000 | 0.000 | 0.990 |
Table 4 The fitting models between the single-factor of soil relative humidity and runoff depths表4 土壤相对湿度单因子与径流深拟合模型 |
因子 | R | R2 | 模型 | F | Sig. | 因子 | R | R2 | 模型 | F | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|
① 水体 | 0.558 | 0.312 | 17.197 | 0.000 | ⑤ 湿润 | 0.140 | 0.020 | 0.764 | 0.388 | ||
② 重旱 | 0.151 | 0.230 | 0.890 | 0.351 | ⑥ 潮湿 | 0.650 | 0.423 | 27.846 | 0.000 | ||
③ 中旱 | 0.126 | 0.016 | 0.612 | 0.439 | ⑦ 过度潮湿 | 0.827 | 0.683 | 81.967 | 0.000 | ||
④ 轻旱 | 0.148 | 0.022 | 0.854 | 0.361 |
Table 5 The fitting models between the double-factors coupled of the soil types and runoff depths表5 土壤类型双因子耦合与径流深拟合模型 |
因子 | R | R2 | 模型 | F | Sig. | 因子 | R | R2 | 模型 | F | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|
12 | 0.464 | 0.215 | 10.425 | 0.003 | 37 | 0.174 | 0.030 | 1.183 | 0.284 | ||
13 | 0.464 | 0.215 | 10.424 | 0.003 | 38 | 0.174 | 0.030 | 1.183 | 0.284 | ||
14 | 0.464 | 0.215 | 10.425 | 0.003 | 39 | 0.174 | 0.030 | 1.183 | 0.284 | ||
15 | 0.464 | 0.215 | 10.425 | 0.003 | 45 | 0.047 | 0.002 | 0.085 | 0.772 | ||
16 | 0.464 | 0.215 | 10.425 | 0.003 | 46 | 0.047 | 0.002 | 0.085 | 0.772 | ||
17 | 0.464 | 0.215 | 10.425 | 0.003 | 47 | 0.047 | 0.002 | 0.085 | 0.772 | ||
18 | 0.464 | 0.215 | 10.425 | 0.003 | 48 | 0.047 | 0.002 | 0.085 | 0.772 | ||
19 | 0.464 | 0.215 | 10.424 | 0.003 | 49 | 0.047 | 0.002 | 0.085 | 0.772 | ||
23 | 0.547 | 0.299 | 16.22 | 0.000 | 56 | 0.150 | 0.023 | 0.880 | 0.354 | ||
24 | 0.547 | 0.299 | 10.425 | 0.000 | 57 | 0.150 | 0.023 | 0.880 | 0.354 | ||
25 | 0.547 | 0.299 | 16.220 | 0.000 | 58 | 0.150 | 0.023 | 0.880 | 0.354 | ||
26 | 0.547 | 0.299 | 16.219 | 0.000 | 59 | 0.150 | 0.023 | 0.880 | 0.354 | ||
27 | 0.547 | 0.299 | 16.220 | 0.000 | 67 | 0.455 | 0.207 | 9.942 | 0.003 | ||
28 | 0.547 | 0.299 | 16.222 | 0.000 | 68 | 0.455 | 0.207 | 9.942 | 0.003 | ||
29 | 0.547 | 0.299 | 16.219 | 0.000 | 69 | 0.455 | 0.207 | 9.942 | 0.003 | ||
34 | 0.174 | 0.030 | 1.183 | 0.284 | 78 | 0.001 | 0.000 | 0.000 | 0.996 | ||
35 | 0.174 | 0.030 | 1.183 | 0.284 | 79 | 0.001 | 0.000 | 0.000 | 0.996 | ||
36 | 0.174 | 0.030 | 1.183 | 0.284 | 89 | 0.087 | 0.008 | 0.293 | 0.592 |
注:12=①×②,表示红壤因子与黄壤因子的正交,即是红壤因子向量与黄壤因子向量的向量积,土壤类型编号见表1,其它意义相同. |
Table 6 The fitting models between the double-factors coupled of the soil relative coverage and runoff depths表6 土壤相对覆盖度双因子耦合与径流深拟合模型 |
因子 | R | R2 | 模型 | F | Sig. | 因子 | R | R2 | 模型 | F | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|
12 | 0.560 | 0.314 | 17.391 | 0.000 | 26 | 0.172 | 0.029 | 1.062 | 0.310 | ||
13 | 0.560 | 0.314 | 17.391 | 0.000 | 34 | 0.236 | 0.056 | 2.189 | 0.147 | ||
14 | 0.560 | 0.314 | 17.391 | 0.000 | 35 | 0.226 | 0.051 | 1.940 | 0.172 | ||
15 | 0.560 | 0.314 | 17.391 | 0.000 | 36 | 0.226 | 0.051 | 1.940 | 0.172 | ||
16 | 0.560 | 0.314 | 17.391 | 0.000 | 45 | 0.132 | 0.017 | 0.673 | 0.417 | ||
23 | 0.168 | 0.028 | 1.051 | 0.312 | 46 | 0.120 | 0.014 | 0.529 | 0.472 | ||
24 | 0.168 | 0.028 | 1.051 | 0.312 | 56 | 0.579 | 0.336 | 16.161 | 0.000 | ||
25 | 0.168 | 0.028 | 1.051 | 0.312 |
注: 12=①×②,表示水体因子与土壤相对覆盖度1的正交,即水体因子向量与土壤相对覆盖度1向量的向量积,土壤覆盖度编号见表2,其它意义相同。 |
Table 7 The fitting models between the double-factors coupled of the soil relative roughness and runoff depths表7 土壤相对粗糙度双因子耦合与径流深拟合模型 |
因子 | R | R2 | 模型 | F | Sig. | 因子 | R | R2 | 模型 | F | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|
12 | 0.968 | 0.937 | 522.122 | 0.000 | 24 | 0.626 | 0.392 | 24.521 | 0.000 | ||
13 | 0.968 | 0.937 | 551.743 | 0.000 | 25 | 0.626 | 0.392 | 24.521 | 0.000 | ||
14 | 0.968 | 0.937 | 551.742 | 0.000 | 34 | 0.000 | 0.000 | 0.000 | 0.990 | ||
15 | 0.968 | 0.937 | 522.121 | 0.000 | 35 | 0.000 | 0.000 | 0.000 | 0.990 | ||
23 | 0.626 | 0.392 | 24.521 | 0.000 | 45 | 0.489 | 0.239 | 11.960 | 0.001 |
注:12=①×②,表示极细粒因子与细粒因子的正交,即是极细粒因子向量与细粒因子向量的向量积,土壤相对粗糙度编号见表3,其它意义相同. |
Table 8 The fitting models between the double-factors coupled of the soil relative humidity and runoff depths表8 土壤相对湿度双因子耦合与径流深拟合模型 |
因子 | R | R2 | 模型 | F | Sig. | 因子 | R | R2 | 模型 | F | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|
12 | 0.558 | 0.312 | 17.195 | 0.000 | 34 | 0.126 | 0.016 | 0.612 | 0.439 | ||
13 | 0.558 | 0.312 | 17.197 | 0.000 | 35 | 0.126 | 0.016 | 0.612 | 0.439 | ||
14 | 0.558 | 0.312 | 17.197 | 0.000 | 36 | 0.292 | 0.085 | 3.269 | 0.079 | ||
15 | 0.558 | 0.312 | 17.197 | 0.000 | 37 | 0.496 | 0.246 | 11.092 | 0.072 | ||
16 | 0.558 | 0.312 | 17.196 | 0.000 | 45 | 0.148 | 0.022 | 0.851 | 0.362 | ||
17 | 0.558 | 0.312 | 17.197 | 0.000 | 46 | 0.148 | 0.022 | 0.851 | 0.362 | ||
23 | 0.128 | 0.016 | 0.562 | 0.458 | 47 | 0.148 | 0.022 | 0.851 | 0.362 | ||
24 | 0.151 | 0.023 | 0.890 | 0.351 | 56 | 0.146 | 0.021 | 0.802 | 0.376 | ||
25 | 0.151 | 0.023 | 0.890 | 0.351 | 57 | 0.155 | 0.024 | 0.891 | 0.352 | ||
26 | 0.126 | 0.016 | 0.565 | 0.457 | 67 | 0.647 | 0.419 | 24.496 | 0.00 | ||
27 | 0.128 | 0.016 | 0.562 | 0.458 |
注:12=①×②,表示水体因子与重旱因子的正交,即是水体因子向量与重旱因子向量的向量积,土壤湿度类型编号见表4,其它意义相同. |
Table 9 The fitting models between the soil single factor and runoff depths表9 土壤单因素与径流深拟合模型 |
因素 | R | R2 | 模型 | F | Sig. |
---|---|---|---|---|---|
① 土壤类型 | 0.464 | 0.215 | 10.424 | 0.003 | |
② 土壤相对覆盖度 | 0.560 | 0.314 | 17.389 | 0.000 | |
③ 土壤相对粗糙度 | 0.968 | 0.937 | 564.747 | 0.000 | |
④ 土壤相对湿度 | 0.558 | 0.312 | 17.196 | 0.000 |
Table 10 The fitting models between the the soil two factors coupled ,three factors coupled, four factors coupled and runoff depths表10 土壤双因素、三因素、四因素耦合与径流深模型 |
因子 | R | R2 | 模型 | F | Sig. | 因子 | R | R2 | 模型 | F | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|
12 | 0.464 | 0.215 | 10.431 | 0.003 | 123 | 0.456 | 0.208 | 9.961 | 0.003 | ||
13 | 0.362 | 0.131 | 5.733 | 0.022 | 124 | 0.672 | 0.451 | 31.262 | 0.000 | ||
14 | 0.464 | 0.216 | 10.439 | 0.003 | 134 | 0.533 | 0.284 | 15.085 | 0.000 | ||
23 | 0.441 | 0.195 | 9.176 | 0.004 | 234 | 0.560 | 0.314 | 17.389 | 0.000 | ||
24 | 0.56 | 0.313 | 17.345 | 0.000 | 1234 | 0.464 | 0.215 | 10.428 | 0.003 | ||
34 | 0.969 | 0.940 | 594.011 | 0.000 |
注:123=①×②×③,表示土壤类型因素向量与土壤相对覆盖度因素向量的向量积,再与土壤相对粗糙度因素向量的向量积;其它意义相同。 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
/
〈 |
|
〉 |