县域尺度中国网络诈骗时空分布特征研究
项金桥(1973‒),男,湖北武汉人,博士研究生,主要从事个人信息司法保护研究。E-mail: 106275904@qq.com |
收稿日期: 2020-10-22
修回日期: 2021-01-29
录用日期: 2021-01-29
网络出版日期: 2021-08-13
基金资助
国家重点研发计划项目(2020YFB1806500)
版权
Spatial-temporal Distribution Characteristics of Cyber Fraud in China on County Scale
Received date: 2020-10-22
Revised date: 2021-01-29
Accepted date: 2021-01-29
Online published: 2021-08-13
Supported by
National Key Research and Development Project(2020YFB1806500)
Copyright
随着互联网的发展和普及,违法犯罪活动逐渐向网络空间渗透,网络诈骗作为一种典型的网络犯罪,严重威胁社会治安稳定。基于裁判文书网数据库的25 597份网络诈骗一审判决书,采用自然语言处理技术提取了2017—2020年中国县域尺度网络诈骗案件,分析了网络诈骗的时空分布特征。空间自相关分析结果表明,网络诈骗案件多集中在东南沿海地区,包括江苏、浙江、上海、福建以及广东一带。随着时间的变化,2019年安徽、河南的聚集区逐渐消失,而湖南、重庆等地形成了明显的聚集区。网络诈骗犯罪者主要来自福建、湖北、河南、广东、湖南,不同省份的网络诈骗犯罪者分布模式有显著差异,江苏、浙江的网络诈骗犯罪者来源较为分散,广东、福建、河南的网络诈骗犯罪者来源相对集中。
项金桥 , 高春东 , 马甜 , 江东 , 郝蒙蒙 , 陈帅 . 县域尺度中国网络诈骗时空分布特征研究[J]. 地理科学, 2021 , 41(6) : 1079 -1087 . DOI: 10.13249/j.cnki.sgs.2021.06.017
With the development and popularization of the Internet, illegal and criminal activities have gradually penetrated cyberspace. Cyber fraud, as a typical cybercrime, has been causing property losses and seriously threatening social stability. Based on 25 597 first-instance written judgments of cyber fraud cases obtained from the China Judgments Online Database (excluding Hong Kong, Macau and Taiwan), this study used Natural Language Processing (NLP) method to extract county-level cyber fraud cases in China from 2017 to 2020 and analyzed the spatial-temporal distribution of cyber fraud. The results of spatial autocorrelation analysis show that cyber fraud mostly happens in the southeast coastal areas, including Jiangsu, Shanghai, Zhejiang, Fujian, and Guangdong. Over time, the clusters of cyber fraud cases in Anhui and Henan gradually disappeared in 2019, while some other noticeable clusters appeared in Hunan, Chongqing, etc. Nationwide, cyber fraud criminals mainly come from Fujian, Hubei, Henan, Guangdong, and Hunan. There are significant differences in the distribution patterns of cyber fraud criminals in different provinces. Cyber fraud criminals inflow to Jiangsu and Zhejiang are relatively scattered, coming from Fujian, Jiangxi, Hunan, Hubei, Henan, Guangdong, Anhui, etc. Cyber fraud criminals inflow to Guangdong, Fujian, and Henan are comparatively concentrated, mainly come from local province and neighboring provinces.
图1 2017—2020年中国各省(市、区)网络诈骗数量未含港澳台数据 Fig. 1 The number of provincial(city, region) cyber fraud cases in China from 2017 to 2020 |
表1 全国网络诈骗数量前50区县中苏、浙、粤、闽、豫5省区县的占比Table 1 The proportion of cyber fraud cases in Jiangsu, Zhejiang, Guangdong, Fujian, and Henan Provinces of the top 50 districts and counties in China |
年份 | 省份 | 区县个数a/个 | 区县个数占比/% | 网络诈骗数b/例 | 网络诈骗数占比/% |
注:a意为全国网络诈骗发生数量排名前50的区县中,属于该省份的区县个数;b意为全国网络诈骗发生数量排名前50的区县中,属于该省份的区县的网络诈骗总数;未含港澳台数据。 | |||||
2017 | 福建省 | 11 | 22 | 286 | 23.1 |
江苏省 | 5 | 10 | 262 | 21.2 | |
浙江省 | 15 | 30 | 260 | 21.1 | |
广东省 | 9 | 18 | 174 | 14.1 | |
河南省 | 3 | 6 | 44 | 3.6 | |
总计 | 43 | 86 | 1026 | 83.1 | |
2018 | 浙江省 | 21 | 42 | 459 | 36.9 |
江苏省 | 7 | 14 | 276 | 22.2 | |
福建省 | 8 | 16 | 223 | 17.9 | |
河南省 | 7 | 14 | 104 | 8.4 | |
广东省 | 3 | 6 | 89 | 7.2 | |
总计 | 46 | 92 | 1151 | 92.6 | |
2019 | 浙江省 | 15 | 30 | 580 | 28.5 |
江苏省 | 6 | 12 | 412 | 20.2 | |
广东省 | 8 | 16 | 232 | 11.4 | |
福建省 | 5 | 10 | 216 | 10.6 | |
河南省 | 3 | 6 | 93 | 4.6 | |
总计 | 37 | 74 | 1533 | 75.3 | |
2020 | 浙江省 | 25 | 50 | 810 | 47.9 |
江苏省 | 6 | 12 | 281 | 16.6 | |
广东省 | 5 | 10 | 121 | 7.2 | |
福建省 | 2 | 4 | 74 | 4.4 | |
河南省 | 0 | 0 | 0 | 0 | |
总计 | 38 | 76 | 1286 | 76.1 |
表2 2017—2020年中国网络诈骗全局莫兰指数Table 2 Global Moran’s I of cyber fraud in China from 2017 to 2020 |
年份 | Moran’s I | Z-score | P值 |
注:未含港澳台数据。 | |||
2017 | 0.1631 | 17.60 | < 0.01 |
2018 | 0.2075 | 20.30 | < 0.01 |
2019 | 0.3565 | 33.13 | < 0.01 |
2020 | 0.4019 | 37.46 | < 0.01 |
表3 中国网络诈骗聚集区的区县数量/个Table 3 The number of districts and counties in the cluster areas of cyber fraud in China |
聚集区 | 2017年 | 2018年 | 2019年 | 2020年 |
注:未含港澳台数据。 | ||||
江浙沪聚集区 | 72 | 89 | 107 | 110 |
福建聚集区 | 22 | 21 | 20 | 14 |
广东聚集区 | 21 | 15 | 17 | 19 |
[1] |
高春东, 郭启全, 江东, 等. 网络空间地理学的理论基础与技术路径[J]. 地理学报, 2019, 74(9): 1709-1722.
Gao Chundong, Guo Qiquan, Jiang Dong et al. The theoretical basis and technical path of cyberspace geography. Acta Geographica Sinica, 2019, 74(9): 1709-1722.
|
[2] |
郭启全, 高春东, 郝蒙蒙, 等. 发展网络空间可视化技术支撑网络安全综合防控体系建设[J]. 中国科学院院刊, 2020, 35(7): 917-924.
Guo Qiquan, Gao Chundong, Hao Mengmeng et al. Develop visualization technology of cyberspace to support the construction of a comprehensive cyber security prevention and control system. Bulletin of Chinese Academy of Sciences, 2020, 35(7): 917-924.
|
[3] |
孔黎明. 我国电信网络诈骗治理的现状分析与对策研究[D]. 南宁: 广西师范大学, 2017.
Kong Liming. The analysis and countermeasures of current situation of China’s telecommunication network fraud. Guangxi: Guangxi Normal University, 2017.
|
[4] |
张宗亮. 全球化背景下的网络犯罪及其控制对策[J]. 中国人民公安大学学报: 社会科学版, 2003(4): 91-97.
Zhang Zongliang. Network crime and its control countermeasures under the background of globalization. Journal of Chinese People’s Public Security University, 2003(4): 91-97.
|
[5] |
安子锐. 电信网络诈骗的规律特点与防治对策[J]. 产业与科技论坛, 2018, 17(18): 34-35.
An Zirui. The characteristic and prevention measure of telecom cyber fraud. Industrial & Science Tribun, 2018, 17(18): 34-35.
|
[6] |
中国互联网络信息中心. 第47次《中国互联网络发展状况统计报告》[N/OL]. 2021-02-03. http://cnnic.cn/gywm/xwzx/rdxw/20172017_7084/202102/t20210203_71364.htm.
China Internet Network Information Center. The 47th China Statistical Report on internet Development. 2021-02-03. http://cnnic.cn/gywm/xwzx/rdxw/20172017_7084/202102/t20210203_71364.htm.
|
[7] |
新华社. 习近平对打击治理电信网络诈骗犯罪工作作重要指示[N/OL]. 2021-04-09. http://www.xinhuanet.com/politics/leaders/2021-04/09/c_1127313085.htm.
Xinhua News Agency. Xi Jinping has made important instructions on combating telecom and Internet fraud. 2021-04-09. http://www.xinhuanet.com/politics/leaders/2021-04/09/c_1127313085.htm.
|
[8] |
姜超, 柳林. 中国犯罪地理与警务GIS研究进展[J]. 地球信息科学学报, 2013, 15(6): 801-808+53.
Jiang Chao, Liu lin. Research progress of crime geography studies in China. Journal of Geo-information Science, 2013, 15(6): 801-808+53.
|
[9] |
祝晓光. 论犯罪地理学[J]. 人文地理, 1989,4(2): 40-46.
Zhu Xiaoguang. Research on the criminal geography. Human Geography, 1989,4(2): 40-46.
|
[10] |
龙冬平, 柳林, 周素红, 等. 地理学视角下犯罪者行为研究进展[J]. 地理科学进展, 2017, 36(7): 886-902.
Long Dongping, Liu Lin, Zhou Suhong et al. Research progress of criminal behavior from the perspective of geography. Progress in Geography, 2017, 36(7): 886-902.
|
[11] |
鉏同君. 福州市盗窃犯罪空间分析[D]. 福州: 福建师范大学, 2014.
Chu Tongjun. Spatial analysis of theft crime in Fuzhou City. Fuzhou: Fujian Normal University, 2014.
|
[12] |
唐梁博. 广州市核心区盗抢犯罪时空分布特征及其实体空间环境影响因素[D]. 广州: 广州大学, 2018.
Tang Liangbo. The spatial and temporal distribution characteristics of "Robbery, grabbing and theft" in the core area of Guangzhou and the influence factors of physica space environment. Guangzhou: Guangzhou University, 2018.
|
[13] |
李钢, 谭然, 王会娟, 等. 中国拐卖儿童犯罪的地理特征研究[J]. 地理科学, 2017, 37(7): 1049-1058.
Li Gang, Tan Ran, Wang Huijuan et al. Geographic characteristics of child trafficking crime in China. Scientia Geographica Sinica, 2017, 37(7): 1049-1058.
|
[14] |
关玉军. 浅谈网络犯罪特点及侦查对策[J]. 网络安全技术与应用, 2015(9): 50+52
Guan Yujun. On the characteristics and countermeasures of cyber crime. Network Security Technology & Application, 2015(9): 50+52
|
[15] |
郭启全, 高春东, 孙开锋, 等. 基于“人-地-网”关系的网络空间要素层次体系建设[J]. 地理研究, 2021, 40(1): 109-118.
Guo Qiquan, Gao Chundong, Sun Kaifeng et al. The construction of cyberspace elements hierarchical system based on man-land-network relationship. Geographical Research, 2021, 40(1): 109-118.
|
[16] |
修文群. 基于GIS的网络犯罪空间管理系统设计[J]. 地理研究, 2006,25(5): 939-948+952.
Xiu Wenqun. The design of cybercrime spatial management system based on GIS. Geographical Research, 2006,25(5): 939-948+952.
|
[17] |
Miró-Llinares F, Moneva A. Environmental criminology and cybercrime: Shifting focus from the wine to the bottles[J]. The Palgrave Handbook of International Cybercrime and Cyberdeviance, 2020(24): 491-511.
|
[18] |
Pratt T C, Holtfreter K, Reisig M D. Routine online activity and internet fraud targeting: Extending the generality of routine activity theory[J]. Journal of Research in Crime and Delinquency, 2010, 47(3): 267-296.
|
[19] |
Reyns B W. Online routines and identity theft victimization: Further expanding routine activity theory beyond direct-contact offenses[J]. Journal of Research in Crime and Delinquency, 2013, 50(2): 216-238.
|
[20] |
Leukfeldt E R, Yar M. Applying routine activity theory to cybercrime: A theoretical and empirical analysis[J]. Deviant Behavior, 2016, 37(3): 263-280.
|
[21] |
张春霞, 柳林, 周素红. ZG市非接触型诈骗被害相对发生概率的性别差异. 地理科学, 2018, 38(8): 1218-1226.
Zhang Chunxia, Liu Lin, Zhou Suhong. Gender difference on relative probability of non-contact fraud in ZG City. Scientia Geographica Sinica, 2018, 38(8): 1218-1226.
|
[22] |
柳林, 张春霞, 冯嘉欣, 等. ZG市诈骗犯罪的时空分布与影响因素. 地理学报, 2017, 72(2): 315-328.
Liu Lin, Zhang Chunxia, Feng Jiaxin et al. The spatial-temporal distribution and influencing factors of fraud crime in ZG city, China. Acta Geographica Sinica, 2017, 72(2): 315-328.
|
[23] |
赵四方, 周学广, 张志刚. 网络诈骗案件热度分析与时空预警模型研究[J]. 计算机与网络, 2018, 44(20): 58-61.
Zhao Sifang, Zhou Xueguang, Zhang Zhigang. Analysis and study on hot degree and spatio-temporal early-warning models of internet fraud. Computer & Network, 2018, 44(20): 58-61.
|
[24] |
鄢文凤, 孙玲琍. 地理加权回归模型在网络诈骗分析中的应用[J]. 湖北民族学院学报(自然科学版), 2017, 35(2): 148-151.
Yan Wenfeng, Sun Lingli. Application of geographical weighted regression model in analyzing internet fraud. Journal of Hubei Minzu University (Nature Science Edition), 2017, 35(2): 148-151.
|
[25] |
陈天麒. 2019年我国电信网络诈骗犯罪的典型空间模式——基于314份判决文书数据的研究[J]. 法制博览, 2020(17): 7-11+104.
Chen Tianqi. Typical spatial patterns of telecom network fraud in China in 2019 — Based on the data of 314 judgment documents. Legality Vision, 2020(17): 7-11+104.
|
[26] |
赵京胜, 宋梦雪, 高祥. 自然语言处理发展及应用综述[J]. 信息技术与信息化, 2019(7): 142-145.
Zhao Jingsheng, Song Mengxue, Gao Xiang. Development and application of natural language processing. Information Technology & Informatization, 2019(7): 142-145.
|
[27] |
郭喜跃, 何婷婷. 信息抽取研究综述[J]. 计算机科学, 2015, 42(2): 14-17+38.
Guo Xiyue, He Tingting. Survey about research on information extraction. Computer Science, 2015, 42(2): 14-17+38.
|
[28] |
陈彦光. 基于Moran统计量的空间自相关理论发展和方法改进[J]. 地理研究, 2009, 28(6): 1449-1463.
Chen Yanguang. Reconstructing the mathematical process of spatial autocorrelation based on Moran’s statistics. Geographical Research, 2009, 28(6): 1449-1463.
|
[29] |
李佳洺, 陆大道, 徐成东, 等. 胡焕庸线两侧人口的空间分异性及其变化[J]. 地理学报, 2017, 72(1): 148-160.
Li Jiaming, Lu Dadao, Xu Chengdong et al. Spatial heterogeneity and its changes of population on the two sides of Hu Line. Acta Geographica Sinica, 2017, 72(1): 148-160.
|
[30] |
张豫辰, 吴照美. 地域性职业电信网络诈骗犯罪研究[J]. 广州市公安管理干部学院学报, 2019, 29(1): 27-29.
Zhang Yuchen, Wu Zhaomei. Research on regional professional telecommunication network fraud crime. Journal of Guangzhou Police College, 2019, 29(1): 27-29.
|
[31] |
徐永胜, 徐公社, 韩冰. 地域性职业电信网络诈骗犯罪及其侦防对策研究[J]. 山东警察学院学报, 2018, 30(1): 121-129.
Xu Yongsheng, Xu Gongshe, Han Bing. Research on regional professional telecommunication network fraud crime and its countermeasure. Journal of Shandong Police College, 2018, 30(1): 121-129.
|
/
〈 |
|
〉 |