时空约束下的地铁可达性研究:以北京为例
王姣娥(1981-),女,湖南涟源人,研究员,博导,主要从事交通地理与区域发展研究。E-mail: wangje@igsnrr.ac.cn |
收稿日期: 2021-03-23
修回日期: 2021-06-11
网络出版日期: 2022-01-20
基金资助
国家自然科学基金项目(42071147)
中国科学技术协会青年人才托举工程项目(2019QNRC001)
中国科学院青年创新促进会(2021049)
版权
Subway Accessibility Under Space-time Constraints: A Case Study of Beijing
Received date: 2021-03-23
Revised date: 2021-06-11
Online published: 2022-01-20
Supported by
National Natural Science Foundation of China(42071147)
Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2019QNRC001)
Youth Innovation Promotion Association of Chinese Academy of Sciences(2021049)
Copyright
以北京市为例,基于340个站点的时刻表构建地铁组织网络,采用网络分析法和累积机会法,对比在“工作日”和“双休日”“高峰期”和“非高峰期”等时空约束下的可达性动态。研究发现:① 由于起始地空间区位特征及沿线土地利用功能结构的多样性,不同线路的时刻组织模式各异。② 基于运营组织网络的地铁可达性存在时刻上的动态变化,一日内早晚高峰可达性最优,双休日可达性略低于平时。③ 基于运营组织网络的地铁可达性与基于设施网络的可达性存在明显空间差异,且距市中心15~20 km处的站点工作日和双休日的可达性差异最大,与地铁网络结构特征有关。综上,基于时刻组织时空约束下的可达性分析有利于了解地铁系统的精细化管理,并有助于进一步剖析居民出行规律和城市空间结构。
王姣娥 , 熊美成 , 黄洁 . 时空约束下的地铁可达性研究:以北京为例[J]. 地理科学, 2022 , 42(1) : 83 -94 . DOI: 10.13249/j.cnki.sgs.2022.01.008
Nowadays, subway has become an important component of daily travel for most megacity residents especially in commuting. Most of existing researches mainly attach importance to spatial accessibility by subway infrastructure network, while measuring accessibility based on timetable and organizational network allows accessibility research to expand to spatial-temporal dimensionality compared with only spatial dimensionality as delicacy of urban management and rising demand of travel timing by residents, which contributes to understand the relationship among travel behavior, subway network and urban space. The paper constructs organizational network of Beijing subway based on timetables of 340 stations, then applies method of network construction and cumulative opportunity accessibility method to make analysis and comparison on accessibility dynamics at station scale on spatial-temporal constraint of weekdays, weekends, peak hours and off-peak hours. The results show significant differences compared with results of subway infrastructure network: 1) For subway lines, organizations differ in different lines due to location of stations and land use function variations along lines. 2) Subway accessibility based on organizational network changes with the time of a day, the highest of which is at peak hours, and accessibility on weekends is slightly lower than that on weekdays; 3) There are spatial differences between subway accessibility based on organizational network and infrastructure network, the highest of which is at stations with 15-20 km distance from city center on weekdays and weekends, which is caused by subway network structure. To sum up, research on spatial-temporal accessibility is conductive for understanding delicacy management of subway network, and probing into urban spatial structure as well as travel pattern of residents.
图7 各线路分小时平均运行间隔时长差值(双休日和工作日)Fig. 7 Hourly average interval time differences of each subway line (weekends and weekdays) |
表1 依据变异系数值划分的3类线路及其沿线主要土地利用结构功能类型Table 1 Three types of subway lines and according land use function based on coefficient classification |
线路名称 | 变异系数 | 类型 | 说 明 |
14号线西段 | 2.11 | 类型一 | 时空可达性差异类型:仅早晚高峰存在差异 |
14号线东段 | 1.82 | 沿线主要土地利用类型:位于市郊的典型居住区、办公区等 | |
4号大兴线 | 1.55 | 代表站点:亦庄桥、西二旗、次渠、朱辛庄等 | |
亦庄线 | 1.19 | ||
昌平线 | 1.09 | ||
8号线南段 | 1.07 | ||
7号线 | 0.99 | 类型二 | 时空可达性差异类型:多时段存在差异 |
2号线 | 0.99 | 沿线主要土地利用类型:商业、科教、文化等综合服务区 | |
1号线 | 0.99 | 代表站点:天安门东、王府井、国家图书馆、南锣鼓巷等 | |
15号线 | 0.93 | ||
房山线 | 0.88 | ||
8号线 | 0.88 | ||
S1线 | 0.85 | ||
13号线 | 0.82 | ||
9号线 | 0.75 | ||
5号线 | 0.73 | ||
10号线 | 0.71 | ||
八通线 | 0.68 | ||
6号线 | 0.59 | ||
16号线 | 0.00 | 类型三 | 时空可达性差异类型:无差异 |
西郊线 | 0.00 | 沿线主要土地利用类型:位于远郊的景区、交通枢纽等 | |
燕房线 | 0.00 | 代表站点:大兴机场、2号航站楼、3号航站楼、香山、植物园等 | |
首都机场线 | 0.00 | ||
大兴机场线 | 0.00 |
[1] |
交通运输部. 2020年交通运输行业发展统计公报[N]. 中国交通报, 2021-05-19(002).
Ministry of Transport of the People's Republic of China. China statistical bulletin on transport industry development 2020. China Transport News, 2021-05-19(002).
|
[2] |
Golias J C. Analysis of traffic corridor impacts from the introduction of the new Athens Metro system[J]. Journal of Transport Geography, 2002, 10(2): 91-97.
|
[3] |
陈慧灵, 王伯礼, 曹小曙, 等. 广州市地铁对常规公交出行成本影响及其空间公平性研究[J]. 地理科学, 2019, 39(8): 1265-1275.
Chen Huiling, Wang Boli, Cao Xiaoshu et al. Impact of rail transit on the travel cost of bus transit and the spatial equity: A case study of Guangzhou. Scientia Geographica Sinica, 2019, 39(8): 1265-1275.
|
[4] |
黄洁, 王姣娥, 靳海涛, 等. 北京市地铁客流的时空分布格局及特征——基于智能交通卡数据[J]. 地理科学进展, 2018, 37(3): 397-406.
Huang Jie, Wang Jiaoe, Jin Haitao et al. Investigating spatiotemporal patterns of passenger flows in the Beijing metro system from smart card data. Progress in Geography, 2018, 37(3): 397-406.
|
[5] |
Calvo F, de Oña J, Arán F. Impact of the Madrid subway on population settlement and land use[J]. Land Use Policy, 2013, 31: 627-639.
|
[6] |
Jang S, An Y, Yi C, et al. Assessing the spatial equity of Seoul’s public transportation using the Gini coefficient based on its accessibility[J]. International Journal of Urban Sciences, 2017, 21(1): 91-107.
|
[7] |
李文翎, 阎小培. 城市轨道交通发展与土地复合利用研究——以广州为例[J]. 地理科学, 2002, 22(5): 574-580.
Li Wenling, Yan Xiaopei. Study on the development of urban MTR system and land compound use —— A case in Guangzhou City. Scientia Geographica Sinica, 2002, 22(5): 574-580.
|
[8] |
Hansen W G. How accessibility shapes land use[J]. Journal of the American Institute of Planners, 1959, 25: 73-76.
|
[9] |
Pirie G H. Measuring accessibility: A review and proposal[J]. Environment and Planning A, 1979, 11(3): 299-312.
|
[10] |
Batty M. Accessibility: In search of a unified theory[J]. Environment and Planning B: Planning and Design, 2009,36(2):191-194.
|
[11] |
宋正娜, 陈雯, 张桂香, 等. 公共服务设施空间可达性及其度量方法[J]. 地理科学进展, 2010, 29(10): 1217-1224.
Song Zhengna, Chen Wen, Zhang Guixiang et al. Spatial accessibility to public service facilities and its measurement approaches. Progress in Geography, 2010, 29(10): 1217-1224.
|
[12] |
Páez A, Scott D M, Morency C. Measuring accessibility: Positive and normative implementations of various accessibility indicators[J]. Journal of Transport Geography, 2012, 25: 141-153.
|
[13] |
Wang F. Measurement, optimization, and impact of health care accessibility: A methodological review[J]. Annals of the Association of American Geographers, 2012, 102(5): 1104-1112.
|
[14] |
Sun L, Jin J G, Lee D H, et al. Demand-driven timetable design for metro services[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 284-299.
|
[15] |
Lee K, Jung W S, Park J S, et al. Statistical analysis of the Metropolitan Seoul Subway System: Network structure and passenger flows[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387(24): 6231-6234.
|
[16] |
郭谦, 吴殿廷, 李瑞, 等. 城市轨道交通网络可达性评价方法研究——以北京轨道交通网络为例[J]. 城市发展研究, 2014, 21(4): 59-65.
Guo Qian, Wu Dianting, Li Rui et al. Evaluation of urban rail network accessibility: A case study of Beijing subway. Urban Development Studies, 2014, 21(4): 59-65.
|
[17] |
Tribby C P, Zandbergen P A. High-resolution spatio-temporal modeling of public transit accessibility[J]. Applied Geography, 2012, 34: 345-355.
|
[18] |
Chen T et al. Identifying urban spatial structure and urban vibrancy in highly dense cities using georeferenced social media data[J]. Habitat International, 2019, 89: 102005.
|
[19] |
黄晓燕, 张爽, 曹小曙. 广州市地铁可达性时空演化及其对公交可达性的影响[J]. 地理科学进展, 2014, 33(8): 1078-1089.
Huang Xiaoyan, Zhang Shuang, Cao Xiaoshu. Spatial-temporal evolution of Guangzhou subway accessibility and its effects on the accessibility of public transportation services. Progress in Geography, 2014, 33(8): 1078-1089.
|
[20] |
Lei T L, Church R L. Mapping transit‐based access: Integrating GIS, routes and schedules[J]. International Journal of Geographical Information Science, 2010, 24(2): 283-304.
|
[21] |
Charleux L. A modification of the time-geographic framework to support temporal flexibility in ‘fixed’ activities[J]. International Journal of Geographical Information Science, 2015, 29(7): 1125-1143.
|
[22] |
罗钦, 徐瑞华, 江志彬, 等. 基于运行图的轨道交通网络动态可达性研究[J]. 同济大学学报(自然科学版), 2010, 38(1): 72-75.
Luo Qin, Xu Ruihua, Jiang Zhibin et al. Dynamic accessibility of urban mass transit network based on train diagram. Journal of Tongji University (Natural Science), 2010, 38(1): 72-75.
|
[23] |
张凌翔, 吴强, 陈颖雪. 时空可达性服务水平下的上海轨道交通末班车时刻表衔接研究[J]. 城市轨道交通研究, 2016, 19(7): 46-50+55.
Zhang Lingxiang, Wu Qiang, Chen Yingxue. Last train time-table coherence in Shanghai railway transit with temporal and spatial accessibility service. Urban Mass Transit, 2016, 19(7): 46-50+55.
|
[24] |
Anderson P A, Owen A, Levinson D M. The time between: Continuously-defined accessibility functions for schedule-based transportation systems[R]. 2012 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.6699&rep=rep1&type=pdf.
|
[25] |
Mavoa S, Witten K, McCreanor T, et al. GIS based destination accessibility via public transit and walking in Auckland, New Zealand[J]. Journal of Transport Geography, 2012, 20(1): 15-22.
|
[26] |
Handley J C, Fu L, Tupper L L. A case study in spatial-temporal accessibility for a transit system[J]. Journal of Transport Geography, 2019, 75: 25-36.
|
[27] |
胡威, 陆志坚. 上海轨道交通8号线双休日运营组织模式优化[J]. 城市轨道交通研究, 2016, 19(2): 5-10.
Hu Wei, Lu Zhijian. Optimization of weekend passenger transport organization on Shanghai rail transit line 8. Urban Mass Transit, 2016, 19(2): 5-10.
|
[28] |
禹丹丹, 陈文, 韩庆龙, 等. 北京地铁节假日客流特点和运营组织方法分析[J]. 现代城市轨道交通, 2019(4): 58-66.
Yu Dandan, Chen Wen, Han Qinglong et al. Analysis of Beijing subway passenger flow characteristics and operation organization method during holidays. Modern Urban Transit, 2019(4): 58-66.
|
[29] |
柴彦威. 中日城市结构比较研究[M]. 北京: 北京大学出版社, 1999.
Chai Yanwei. A comparative study on spatial structure between Chinese cities and Japanese cities. Beijing: Peking University Press, 1999.
|
[30] |
张文尝, 马清裕. 城市交通与城市发展[M]. 北京: 商务印书馆, 2010.
Zhang Wenchang, Ma Qingyu. Urban transportation and urban development. Beijing: The Commercial Press, 2010.
|
[31] |
Fayyaz S K, Liu X C, Porter R J. Dynamic transit accessibility and transit gap causality analysis[J]. Journal of Transport Geography, 2017, 59: 27-39.
|
[32] |
李春艳, 杜华兵, 梁晓红, 等. 2020年北京市交通发展年度报告[M]. 北京: 北京交通发展研究院, 2020.
Li Chunyan, Du Huabing, Liang Xiaohong et al. 2020 Beijing transport development annual report. Beijing: Beijing Transport Institute, 2020.
|
[33] |
Bozyiğit A, Alankuş G, Nasiboğlu E. Public transport route planning: Modified dijkstra’s algorithm[C]//2017 International Conference on Computer Science and Engineering (UBMK). IEEE, 2017: 502-505.
|
[34] |
Levinson D, Marion B, Owen A, et al. The city is flatter: Changing patterns of job and labor access[J]. Cities, 2017, 60: 124-138.
|
[35] |
湛东升, 谢春鑫, 张文忠, 等. 基于累计机会可达性的北京城市公共服务设施复合功能识别[J]. 地球信息科学学报, 2020, 22(6): 1320-1329.
Zhan Dongsheng, Xie Chunxin, Zhang Wenzhong et al. Identifying mixed functions of urban public service facilities in Beijing by cumulative opportunity accessibility method. Journal of Geo-information Science, 2020, 22(6): 1320-1329.
|
[36] |
温慧敏, 顾涛, 王志丽, 等. 《2019年北京交通发展年报》系列[M]. 北京: 北京交通发展研究院, 2019.
Wen Huimin, Gu Tao, Wang Zhili et al. 2019 Beijing transport development annual report. Beijing: Beijing Transport Institute, 2019.
|
/
〈 |
|
〉 |